-
0
2
2
-
1
0
7
- d3b98059-03da-4b8b-a57a-069658ce8766
- Shaded
- 3
-
255;191;191;191
-
255;201;201;201
- 638252831365521843
- XHG..ⵙᔓᔕⵙᗱᗴⵙᙁⵙᑐᑕⵙᴥⵙꖴⵙᑐᑕⵙ◯ⵙ✤ⵙИNⵙᗱᗴⵙᕤᕦⵙИNⵙᗩⵙ✤ⵙ◯ⵙᙁⵙᗩⵙꖴⵙᗝⵙᗩⵙᴥⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⚪ⵙ◯ⵙ◯ⵙ⚪ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙᴥⵙᗩⵙᗝⵙꖴⵙᗩⵙᙁⵙ◯ⵙ✤ⵙᗩⵙИNⵙᕤᕦⵙᗱᗴⵙИNⵙ✤ⵙ◯ⵙᑐᑕⵙꖴⵙᴥⵙᑐᑕⵙᙁⵙᗱᗴⵙᔓᔕⵙ..GHX
- 0
-
105
1684
- 1
- 0
- 0
- 6
- Palette, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
- 1.0.0.0
- Michael Pryor
- d94849ce-6c4d-4303-8ff4-765a58e82529
- Palette
- Bengesht, Version=3.3.0.0, Culture=neutral, PublicKeyToken=null
- 3.3.0.0
- 00000000-0000-0000-0000-000000000000
- Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null
- 0.4.0.0
- Mateusz Zwierzycki
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Anemone
- 0.4
- BullantGH, Version=1.5.8.0, Culture=neutral, PublicKeyToken=null
- 1.5.8.0
- Geometry Gym Pty Ltd
- 2cd3c35a-cada-1a81-ddba-5b184219e513
- BullAnt
- Bubalus_GH2, Version=2.1.5.0, Culture=neutral, PublicKeyToken=null
- 2.1.5.0
- 月之眼(邓国超) && 好多猫(萧启明)
- 8df4d222-85a2-467d-a510-b8dde333d730
- BubalusGH2.0
- 2.1.005
- GraphicPlus, Version=1.5.2.0, Culture=neutral, PublicKeyToken=null
- 1.5.2.0
- David Mans
- a48ac930-c378-48dc-84da-26b2af9d8302
- GraphicPlus
- 1.2.0.0
- 104
- ac3c856d-819d-4565-a2cc-8d1cbdc05c97
- d94849ce-6c4d-4303-8ff4-765a58e82529
- Palette
- Customize Grasshopper's GUI and toggle between your Custom GUI and Grasshopper's standard GUI.
- true
- cf580cd3-8c86-4628-8244-702ca09bb9a6
- Palette
- Palette
-
190
-1128
256
1344
-
432
-456
- True = Custom
False = Standard
- 6a6c6aa9-0d90-44dd-a419-91bdcd0085fb
- Mode(Custom/Standard)
- Mode(Custom/Standard)
- false
- 0
-
192
-1126
228
20
-
306
-1116
- 1
- 1
- {0}
- true
- This input does nothing, it is just a spacer
- c8adee2d-568a-431a-9a3b-65078c21d9d3
- Spacer
- Spacer
- true
- 0
-
192
-1106
228
20
-
306
-1096
- Component_Normal_Deselected_Fill_Color
- f6b959c6-305e-4556-851e-dfe3db8616ce
- Component_Normal_Deselected_Fill_Color
- Component_Normal_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-1086
228
20
-
306
-1076
- 1
- 1
- {0}
-
255;255;255;255
- Component_Normal_Deselected_Edge_Color
- 58f3f6bb-4870-4132-b2ed-38ba0cd16373
- Component_Normal_Deselected_Edge_Color
- Component_Normal_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-1066
228
20
-
306
-1056
- 1
- 1
- {0}
-
255;201;201;201
- Component_Normal_Deselected_Text_Color
- 44b220b8-34dd-484a-947e-534161ff26b0
- Component_Normal_Deselected_Text_Color
- Component_Normal_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-1046
228
20
-
306
-1036
- 1
- 1
- {0}
-
255;82;82;82
- Component_Normal_Selected_Fill_Color
- 0a62a62f-77bd-4dda-b0ed-3a12b7fc7643
- Component_Normal_Selected_Fill_Color
- Component_Normal_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
192
-1026
228
20
-
306
-1016
- 1
- 1
- {0}
-
255;224;224;224
- Component_Normal_Selected_Edge_Color
- 3e3bf076-2f8d-473e-8fb4-f92db28df2ff
- Component_Normal_Selected_Edge_Color
- Component_Normal_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-1006
228
20
-
306
-996
- 1
- 1
- {0}
-
255;186;186;186
- Component_Normal_Selected_Text_Color
- 095dd5d8-570e-49a2-8e67-cea92b6be7a3
- Component_Normal_Selected_Text_Color
- Component_Normal_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-986
228
20
-
306
-976
- 1
- 1
- {0}
-
255;92;92;92
- This input does nothing, it is just a spacer
- d905c0b0-8e82-4b7f-8eba-51505c30c8e7
- Spacer
- Spacer
- true
- 0
-
192
-966
228
20
-
306
-956
- Component_Hidden_Deselected_Fill_Color
- 321957b9-2793-4637-848c-5ce91391c786
- Component_Hidden_Deselected_Fill_Color
- Component_Hidden_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-946
228
20
-
306
-936
- 1
- 1
- {0}
-
255;255;255;255
- Component_Hidden_Deselected_Edge_Color
- 0a7dd4a1-56e3-4430-83fa-b6dee39ba5e2
- Component_Hidden_Deselected_Edge_Color
- Component_Hidden_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-926
228
20
-
306
-916
- 1
- 1
- {0}
-
255;140;140;140
- Component_Hidden_Deselected_Text_Color
- d4ff0608-c217-43bf-90b9-c3174669c5b5
- Component_Hidden_Deselected_Text_Color
- Component_Hidden_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-906
228
20
-
306
-896
- 1
- 1
- {0}
-
255;66;66;66
- Component_Hidden_Selected_Fill_Color
- fe81550d-42f1-474d-82fa-fc63ded3a33c
- Component_Hidden_Selected_Fill_Color
- Component_Hidden_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
192
-886
228
20
-
306
-876
- 1
- 1
- {0}
-
255;207;207;207
- Component_Hidden_Selected_Edge_Color
- d242f68d-4dde-4615-b1e4-cfc397eef79a
- Component_Hidden_Selected_Edge_Color
- Component_Hidden_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-866
228
20
-
306
-856
- 1
- 1
- {0}
-
255;148;148;148
- Component_Hidden_Selected_Text_Color
- bda0eb10-ab2b-48c8-9d8e-97a6e8fd4ae1
- Component_Hidden_Selected_Text_Color
- Component_Hidden_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-846
228
20
-
306
-836
- 1
- 1
- {0}
-
255;0;25;0
- This input does nothing, it is just a spacer
- 4673c598-8f3d-4e72-b57e-b181a741ced8
- Spacer
- Spacer
- true
- 0
-
192
-826
228
20
-
306
-816
- Component_Disabled_Deselected_Fill_Color
- 7bde9353-e2ff-4945-b4c9-14b806259c72
- Component_Disabled_Deselected_Fill_Color
- Component_Disabled_Deselected_Fill_Color
- false
- 1da98593-0ce8-41ff-a667-7c2be94a0815
- 1
-
192
-806
228
20
-
306
-796
- 1
- 1
- {0}
-
255;173;173;173
- Component_Disabled_Deselected_Edge_Color
- 71159c9b-1e20-4c06-97da-3c2eb5b91d32
- Component_Disabled_Deselected_Edge_Color
- Component_Disabled_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-786
228
20
-
306
-776
- 1
- 1
- {0}
-
255;135;135;135
- Component_Disabled_Deselected_Text_Color
- 4b17e381-1311-43c2-8544-d1d5b9458697
- Component_Disabled_Deselected_Text_Color
- Component_Disabled_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-766
228
20
-
306
-756
- 1
- 1
- {0}
-
255;66;66;66
- Component_Disabled_Selected_Fill_Color
- 12baaaf6-1012-42ee-86b6-cbdc737d8de1
- Component_Disabled_Selected_Fill_Color
- Component_Disabled_Selected_Fill_Color
- false
- 41622ff4-285a-4767-ad45-9c5a68eb3205
- 1
-
192
-746
228
20
-
306
-736
- 1
- 1
- {0}
-
255;145;145;145
- Component_Disabled_Selected_Edge_Color
- c8896686-befd-4231-b333-7faff2e2c4fb
- Component_Disabled_Selected_Edge_Color
- Component_Disabled_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-726
228
20
-
306
-716
- 1
- 1
- {0}
-
255;122;122;122
- Component_Disabled_Selected_Text_Color
- baa2bdde-0550-4e7c-abf0-07aabbc25870
- Component_Disabled_Selected_Text_Color
- Component_Disabled_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-706
228
20
-
306
-696
- 1
- 1
- {0}
-
255;110;110;110
- This input does nothing, it is just a spacer
- 156de1c3-5ce0-4b3c-b550-7dc589cf19f9
- Spacer
- Spacer
- true
- 0
-
192
-686
228
20
-
306
-676
- Component_Warning_Deselected_Fill_Color
- f011810c-2c52-41fe-a8af-3048783663f4
- Component_Warning_Deselected_Fill_Color
- Component_Warning_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-666
228
20
-
306
-656
- 1
- 1
- {0}
-
255;255;255;255
- Component_Warning_Deselected_Edge_Color
- 9edde004-fda3-4653-99de-fbc2c5927c8d
- Component_Warning_Deselected_Edge_Color
- Component_Warning_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-646
228
20
-
306
-636
- 1
- 1
- {0}
-
255;125;125;125
- Component_Warning_Deselected_Text_Color
- a7c322df-e6ad-4443-833b-a5027d642b5a
- Component_Warning_Deselected_Text_Color
- Component_Warning_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-626
228
20
-
306
-616
- 1
- 1
- {0}
-
255;0;0;0
- Component_Warning_Selected_Fill_Color
- 4332093e-f0bf-4490-9902-f6cb75830c83
- Component_Warning_Selected_Fill_Color
- Component_Warning_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
192
-606
228
20
-
306
-596
- 1
- 1
- {0}
-
255;230;230;230
- Component_Warning_Selected_Edge_Color
- 2a4c368c-47ff-4197-9cd7-c08a1cfc5cd2
- Component_Warning_Selected_Edge_Color
- Component_Warning_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-586
228
20
-
306
-576
- 1
- 1
- {0}
-
255;0;50;0
- Component_Warning_Selected_Text_Color
- 4ad8f30a-a901-41f6-9368-60f73d1feafa
- Component_Warning_Selected_Text_Color
- Component_Warning_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-566
228
20
-
306
-556
- 1
- 1
- {0}
-
255;0;0;0
- This input does nothing, it is just a spacer
- 83a35c52-95be-4aa6-b663-9f62ca3af846
- Spacer
- Spacer
- true
- 0
-
192
-546
228
20
-
306
-536
- Component_Error_Deselected_Fill_Color
- 0a0cf5a2-ebc6-47a6-aa59-29d08219bc7c
- Component_Error_Deselected_Fill_Color
- Component_Error_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-526
228
20
-
306
-516
- 1
- 1
- {0}
-
255;200;0;0
- Component_Error_Deselected_Edge_Color
- f2d5a1d2-54e4-4d9e-849a-7a321a51c71f
- Component_Error_Deselected_Edge_Color
- Component_Error_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-506
228
20
-
306
-496
- 1
- 1
- {0}
-
255;60;0;0
- Component_Error_Deselected_Text_Color
- 10f13eed-fb06-48d2-88fe-4ccd2b4c1de1
- Component_Error_Deselected_Text_Color
- Component_Error_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-486
228
20
-
306
-476
- 1
- 1
- {0}
-
255;0;0;0
- Component_Error_Selected_Fill_Color
- 3c282599-5602-4c4f-a224-4e67e49976af
- Component_Error_Selected_Fill_Color
- Component_Error_Selected_Fill_Color
- false
- 0
-
192
-466
228
20
-
306
-456
- 1
- 1
- {0}
-
255;255;255;255
- Component_Error_Selected_Edge_Color
- 1cce579f-e827-4b62-a4eb-2db9743078b4
- Component_Error_Selected_Edge_Color
- Component_Error_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-446
228
20
-
306
-436
- 1
- 1
- {0}
-
255;0;50;0
- Component_Error_Selected_Text_Color
- 45c987ff-932c-44a5-a12c-9b6313e72b8a
- Component_Error_Selected_Text_Color
- Component_Error_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-426
228
20
-
306
-416
- 1
- 1
- {0}
-
255;255;255;255
- This input does nothing, it is just a spacer
- 5b2574b8-2175-4877-90c0-7d3edea60d33
- Spacer
- Spacer
- true
- 0
-
192
-406
228
20
-
306
-396
- Component_Label_Deselected_Fill_Color
- 2c1c26ee-6404-49ca-b28a-cfb4ead0d2e1
- Component_Label_Deselected_Fill_Color
- Component_Label_Deselected_Fill_Color
- false
- 0
-
192
-386
228
20
-
306
-376
- 1
- 1
- {0}
-
255;50;50;50
- Component_Label_Deselected_Edge_Color
- 602244c8-bf52-4371-a87b-388a0612939a
- Component_Label_Deselected_Edge_Color
- Component_Label_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-366
228
20
-
306
-356
- 1
- 1
- {0}
-
255;0;0;0
- Component_Label_Deselected_Text_Color
- 4f76b9df-5ef3-4336-a982-66c0a18b2f8c
- Component_Label_Deselected_Text_Color
- Component_Label_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-346
228
20
-
306
-336
- 1
- 1
- {0}
-
255;255;255;255
- Component_Label_Selected_Fill_Color
- 4755f628-28f0-43e7-9567-c9f4a6347eb7
- Component_Label_Selected_Fill_Color
- Component_Label_Selected_Fill_Color
- false
- 0
-
192
-326
228
20
-
306
-316
- 1
- 1
- {0}
-
255;25;60;25
- Component_Label_Selected_Edge_Color
- 1a80ded9-3255-4d13-b155-c6a4b3fbc080
- Component_Label_Selected_Edge_Color
- Component_Label_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-306
228
20
-
306
-296
- 1
- 1
- {0}
-
255;0;35;0
- Component_Label_Selected_Text_Color
- 7ceb31d3-04c8-461d-811f-f33619dd34a8
- Component_Label_Selected_Text_Color
- Component_Label_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-286
228
20
-
306
-276
- 1
- 1
- {0}
-
255;190;250;180
- This input does nothing, it is just a spacer
- d652999b-5a4b-41c8-a7b9-a9ae76fb5699
- Spacer
- Spacer
- true
- 0
-
192
-266
228
20
-
306
-256
- Galapagos_Deselected_Fill_Color
- b9fafc3f-9f97-4907-93d7-d61a29223c7f
- Galapagos_Deselected_Fill_Color
- Galapagos_Deselected_Fill_Color
- false
- 0
-
192
-246
228
20
-
306
-236
- 1
- 1
- {0}
-
255;252;252;252
- Galapagos_Deselected_Edge_Color
- 74a688e8-b34e-4091-9b76-27007c49de29
- Galapagos_Deselected_Edge_Color
- Galapagos_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-226
228
20
-
306
-216
- 1
- 1
- {0}
-
255;100;0;50
- Galapagos_Selected_Fill_Color
- 1e33c84f-2937-486e-bb9f-9ab17866e471
- Galapagos_Selected_Fill_Color
- Galapagos_Selected_Fill_Color
- false
- 0
-
192
-206
228
20
-
306
-196
- 1
- 1
- {0}
-
255;255;255;255
- Galapagos_Selected_Edge_Color
- 200dc3d8-e55f-429e-aac4-6083a05e41e4
- Galapagos_Selected_Edge_Color
- Galapagos_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-186
228
20
-
306
-176
- 1
- 1
- {0}
-
255;0;50;0
- This input does nothing, it is just a spacer
- f728dada-ea5d-41b0-b98a-8de512f00fc4
- Spacer
- Spacer
- true
- 0
-
192
-166
228
20
-
306
-156
- Wire_Normal_Color
- 0fcc9cb5-ff01-4adc-80db-8249b1cb1362
- Wire_Normal_Color
- Wire_Normal_Color
- false
- ab85a55e-b675-4974-8817-fc5f46ae741a
- 1
-
192
-146
228
20
-
306
-136
- 1
- 1
- {0}
-
255;230;230;230
- Wire_Empty_Color
- 78a2afee-b670-426b-a371-999235a7e337
- Wire_Empty_Color
- Wire_Empty_Color
- false
- ab85a55e-b675-4974-8817-fc5f46ae741a
- 1
-
192
-126
228
20
-
306
-116
- 1
- 1
- {0}
-
180;230;55;2
- Wire_Selected_Start_Color
- d41f6915-a75d-46dc-b44c-982c253a5b9e
- Wire_Selected_Start_Color
- Wire_Selected_Start_Color
- false
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- 1
-
192
-106
228
20
-
306
-96
- 1
- 1
- {0}
-
255;230;230;230
- Wire_Selected_End_Color
- 2410a63c-6af9-409a-b554-f2e05e8d3950
- Wire_Selected_End_Color
- Wire_Selected_End_Color
- false
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- 1
-
192
-86
228
20
-
306
-76
- 1
- 1
- {0}
-
255;230;230;230
- This input does nothing, it is just a spacer
- be73375b-cea8-4bb4-b84f-47c1c53dba45
- Spacer
- Spacer
- true
- 0
-
192
-66
228
20
-
306
-56
- Panel_Default_Color
This does not change the color of Panels already on the canvas, it changes the default color for new Panels
- 29278a69-6358-418c-aba8-2f26dfb10578
- Panel_Default_Color
- Panel_Default_Color
- false
- 0
-
192
-46
228
20
-
306
-36
- 1
- 1
- {0}
-
255;255;255;255
- Group_Default_Color
This does not change the color of Groups already on the canvas, it changes the default color for new Groups
- 99defed7-0c8b-446e-be4d-436c05592d1b
- Group_Default_Color
- Group_Default_Color
- false
- 0
-
192
-26
228
20
-
306
-16
- 1
- 1
- {0}
-
255;255;255;255
- This input does nothing, it is just a spacer
- 19fc00c2-190e-4e70-998b-e26dc4f9f8af
- Spacer
- Spacer
- true
- 0
-
192
-6
228
20
-
306
4
- Canvas_Background_Color
- 8b28a632-1507-43a4-8735-9a181ad39bcc
- Canvas_Background_Color
- Canvas_Background_Color
- false
- 0
-
192
14
228
20
-
306
24
- 1
- 1
- {0}
-
255;255;255;255
- Canvas_Gridline_Color
- 72826570-5a41-4ef5-936d-59e648e96383
- Canvas_Gridline_Color
- Canvas_Gridline_Color
- false
- 0
-
192
34
228
20
-
306
44
- 1
- 1
- {0}
-
255;240;240;240
- Canvas_Gridline_Width
- f2e7af00-bbdc-4f45-a020-e3f2020b5345
- Canvas_Gridline_Width
- Canvas_Gridline_Width
- false
- 0
-
192
54
228
20
-
306
64
- 1
- 1
- {0}
- 2
- Canvas_Gridline_Height
- b32ba782-b9e0-40b1-9b49-c17de5b67dae
- Canvas_Gridline_Height
- Canvas_Gridline_Height
- false
- 0
-
192
74
228
20
-
306
84
- 1
- 1
- {0}
- 2
- Canvas_Edge_Color
- 5859d87e-580c-4f1f-af8c-3683e3dc94d8
- Canvas_Edge_Color
- Canvas_Edge_Color
- false
- 0
-
192
94
228
20
-
306
104
- 1
- 1
- {0}
-
255;207;207;207
- Canvas_Shadow_Color
- 6f769f3e-eb42-4a27-af68-d95482a87942
- Canvas_Shadow_Color
- Canvas_Shadow_Color
- false
- 0
-
192
114
228
20
-
306
124
- 1
- 1
- {0}
-
0;237;237;237
- Canvas_Shadow_Size
- 57186c1f-9afb-4410-9800-b9138d1f1a74
- Canvas_Shadow_Size
- Canvas_Shadow_Size
- false
- 0
-
192
134
228
20
-
306
144
- 1
- 1
- {0}
- 2
- This input does nothing, it is just a spacer
- 288db22f-a056-435a-ba44-1260facefde8
- Spacer
- Spacer
- true
- 0
-
192
154
228
20
-
306
164
- True = Removes Canvas Grid, Edge, and Shadow - Canvas uses Monochromatic_Color
False = Keeps Canvas Grid, Edge, and Shadow - Canvas uses Canvas_Background_Color
- d5f8a2aa-1f17-4d15-adf8-66c82a72a6ee
- Monochromatic(On/Off)
- Monochromatic(On/Off)
- false
- 0
-
192
174
228
20
-
306
184
- 1
- 1
- {0}
- false
- Monochromatic_Color
- 55f56dcf-b4a3-4ffe-b7fa-e71cbe5737fb
- Monochromatic_Color
- Monochromatic_Color
- false
- 0
-
192
194
228
20
-
306
204
- 1
- 1
- {0}
-
255;255;255;255
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- b5a6a551-46d2-4806-81c1-4e694142c31a
- Colour Swatch
- false
- 0
-
255;209;209;209
-
48
-299
60
20
-
48
-298.8022
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- Colour Swatch
- false
- 0
-
255;255;255;255
-
48
-1079
60
20
-
48
-1078.802
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- a5070296-591f-454e-b939-4e1ba45b08e2
- Colour Swatch
- false
- 0
-
255;115;115;115
-
48
-339
60
20
-
48
-338.8022
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- Colour Swatch
- false
- 0
-
255;227;227;227
-
48
-1019
60
20
-
48
-1018.802
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- ab85a55e-b675-4974-8817-fc5f46ae741a
- Colour Swatch
- false
- 0
-
255;222;222;222
-
48
55
60
20
-
48
55.94703
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- Colour Swatch
- false
- 0
-
255;168;168;168
-
48
115
60
20
-
48
115.947
- de131812-96cf-4cef-b9ee-7c7031802751
- 00000000-0000-0000-0000-000000000000
- InfoGlasses
- To show the components' advances information.Right click to have advanced options
- true
- c54e16b2-ccf6-4f4e-95dc-0fd1ce565c24
- 0
- true
- InfoGlasses
- InfoGlasses
- 0
- 0
-
255;255;255;255
-
255;115;115;115
- true
- true
- true
-
255;59;59;59
- 1000
- 8
- false
- 0
- false
- true
- false
- 2
- 1
- 8
- false
- false
- false
-
235
-1174
176
28
-
340
-1160
- Run
- 72e93834-66d7-4933-aef0-991e6bdf6f81
- true
- Run
- Run
- false
- 0
-
237
-1172
31
24
-
312.5
-1160
- 1
- 1
- {0}
- true
- ab14760f-87a6-462e-b481-4a2c26a9a0d7
- Derivatives
- Evaluate the derivatives of a curve at a specified parameter.
- true
- c3a5eb6d-f6f6-4e7d-8ede-60fcdc1f4260
- true
- Derivatives
- Derivatives
-
551
-4719
120
144
-
630
-4647
- 2
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 7
- fbac3e32-f100-4292-8692-77240a42fd1a
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- Curve to evaluate
- f3ee6bc2-fdad-4aa8-bc05-a096970cebc8
- true
- Curve
- Curve
- false
- 0
-
553
-4717
65
70
-
585.5
-4682
- Parameter on curve domain to evaluate
- 04c36552-d571-45f3-874e-eb0200b47d22
- true
- Parameter
- Parameter
- false
- 0
-
553
-4647
65
70
-
585.5
-4612
- Point on curve at {t}
- baaac401-d9a7-411b-805d-a15c35db80eb
- true
- Point
- Point
- false
- 0
-
642
-4717
27
20
-
655.5
-4707
- First curve derivative at t (Velocity)
- d5b87ddb-341e-4bd8-afdb-367567c6bba3
- true
- false
- First derivative
- 1
- false
- 0
-
642
-4697
27
20
-
655.5
-4687
- Second curve derivative at t (Acceleration)
- 2639343a-12c6-4387-90cc-a3114bd783d6
- true
- false
- Second derivative
- 2
- false
- 0
-
642
-4677
27
20
-
655.5
-4667
- Third curve derivative at t (Jolt)
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- true
- false
- Third derivative
- 3
- false
- 0
-
642
-4657
27
20
-
655.5
-4647
- Fourth curve derivative at t (Jounce)
- 92510296-d128-4ce9-a581-482c09cbc15e
- true
- false
- Fourth derivative
- 4
- false
- 0
-
642
-4637
27
20
-
655.5
-4627
- Fifth curve derivative at t
- ce3af00f-0726-43e6-b974-248803cfe0e6
- true
- false
- Fifth derivative
- 5
- false
- 0
-
642
-4617
27
20
-
655.5
-4607
- Sixth curve derivative at t
- e943f2d8-f1f9-4bb1-aef8-c108ef86c002
- true
- false
- Sixth derivative
- 6
- false
- 0
-
642
-4597
27
20
-
655.5
-4587
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- a28e949a-03f8-43f8-b244-d21a8d6e41e4
- true
- Line SDL
- Line SDL
-
433
-5982
179
64
-
576
-5950
- Line start point
- 79adb25f-f822-4463-a547-0638ba3af362
- true
- Start
- Start
- false
- 0
-
435
-5980
129
20
-
507.5
-5970
- Line tangent (direction)
- 03636d62-1370-4942-88f4-857a65464d92
- true
- Direction
- Direction
- false
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- 1
-
435
-5960
129
20
-
507.5
-5950
- 1
- 1
- {0}
-
0
0
1
- Line length
- 71e8a980-e875-42d1-82e8-80286c8cbc52
- -X
- true
- Length
- Length
- false
- 0
-
435
-5940
129
20
-
507.5
-5930
- 1
- 1
- {0}
- 1
- Line segment
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- true
- Line
- Line
- false
- 0
-
588
-5980
22
60
-
599
-5950
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 391756f9-4358-45d1-936e-c496ba6104e0
- true
- Create Material
- Create Material
-
471
-6106
152
104
-
569
-6054
- Colour of the diffuse channel
- 99cd1941-02ef-4b60-9081-2924d6df2987
- true
- Diffuse
- Diffuse
- false
- 0
-
473
-6104
84
20
-
515
-6094
- 1
- 1
- {0}
-
255;232;232;232
- Colour of the specular highlight
- b4fa067f-1df1-4344-b55f-bc629475264a
- true
- Specular
- Specular
- false
- 0
-
473
-6084
84
20
-
515
-6074
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 38f16f51-687d-44ec-9aab-4b4c5db2f705
- true
- Emission
- Emission
- false
- 0
-
473
-6064
84
20
-
515
-6054
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- f0216951-6a43-4fe8-8f72-957347479ac7
- true
- Transparency
- Transparency
- false
- 0
-
473
-6044
84
20
-
515
-6034
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 1a0cdefa-8194-428a-b2af-d416a232075e
- true
- Shine
- Shine
- false
- 0
-
473
-6024
84
20
-
515
-6014
- 1
- 1
- {0}
- 100
- Resulting material
- 200bbd93-5b58-4c27-8078-0adeb21b162c
- true
- Material
- Material
- false
- 0
-
581
-6104
40
100
-
601
-6054
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- d7be4360-884f-4c85-be96-44fb8a798a7d
- true
- Custom Preview
- Custom Preview
-
584
-6169
76
44
-
646
-6147
- Geometry to preview
- true
- 7d2280d0-5877-4448-8407-b4d0b2e99066
- true
- Geometry
- Geometry
- false
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- 1
-
586
-6167
48
20
-
610
-6157
- The material override
- 0ab4a55d-2d50-496f-9431-24974e37bb78
- true
- Material
- Material
- false
- 200bbd93-5b58-4c27-8078-0adeb21b162c
- 1
-
586
-6147
48
20
-
610
-6137
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 4f93409d-e3de-4e47-b8ce-b1a1fa6684c9
- true
- Evaluate Length
- Evaluate Length
-
476
-6253
147
64
-
559
-6221
- Curve to evaluate
- ece5eb15-d68e-4325-8ac6-14e1983b8848
- true
- Curve
- Curve
- false
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- 1
-
478
-6251
69
20
-
512.5
-6241
- Length factor for curve evaluation
- b7b17610-8182-4eb0-beff-f9003e5cd200
- true
- Length
- Length
- false
- 0
-
478
-6231
69
20
-
512.5
-6221
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- e9204942-5fcb-43c4-9bd7-bad7da1f1095
- true
- Normalized
- Normalized
- false
- 0
-
478
-6211
69
20
-
512.5
-6201
- 1
- 1
- {0}
- true
- Point at the specified length
- 0b07833a-e9b0-4c65-b08a-a86c6f095e42
- true
- Point
- Point
- false
- 0
-
571
-6251
50
20
-
596
-6241
- Tangent vector at the specified length
- d4d0d2a3-7672-4c9b-847d-0720f0276387
- true
- Tangent
- Tangent
- false
- 0
-
571
-6231
50
20
-
596
-6221
- Curve parameter at the specified length
- 4821c9f2-9535-42fb-89a8-46c9b7c32eca
- true
- Parameter
- Parameter
- false
- 0
-
571
-6211
50
20
-
596
-6201
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- f8bf8b17-5f64-4003-9ce1-9026aaac4695
- true
- Interpolate
- Interpolate
-
388
-6357
225
84
-
561
-6315
- 1
- Interpolation points
- 5b1939bb-f0f0-413a-9564-dbeb140f85b7
- true
- Vertices
- Vertices
- false
- 0b07833a-e9b0-4c65-b08a-a86c6f095e42
- 1
-
390
-6355
159
20
-
469.5
-6345
- Curve degree
- 03f9d6bf-b682-46a6-9e8a-34324164c9b0
- true
- Degree
- Degree
- false
- 0
-
390
-6335
159
20
-
469.5
-6325
- 1
- 1
- {0}
- 3
- Periodic curve
- cf0efaf9-d364-4835-a799-f77814defd1e
- true
- Periodic
- Periodic
- false
- 0
-
390
-6315
159
20
-
469.5
-6305
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 68ab4f2d-155f-49e9-9089-6cceba7398b5
- true
- KnotStyle
- KnotStyle
- false
- 0
-
390
-6295
159
20
-
469.5
-6285
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- cd554e84-a87c-47bc-a79c-19347e2f0445
- true
- Curve
- Curve
- false
- 0
-
573
-6355
38
26
-
592
-6341.667
- Curve length
- 84582cb4-6638-42b4-a325-f4e841513b71
- true
- Length
- Length
- false
- 0
-
573
-6329
38
27
-
592
-6315
- Curve domain
- 2d16f12e-6fb5-4594-8c47-80e046dd4a10
- true
- Domain
- Domain
- false
- 0
-
573
-6302
38
27
-
592
-6288.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 59480eb6-f67d-4aed-af3c-80bcc65b0c97
- true
- Create Material
- Create Material
-
471
-6481
152
104
-
569
-6429
- Colour of the diffuse channel
- d0a233c4-5cbf-47b6-b827-30877f3c0605
- true
- Diffuse
- Diffuse
- false
- 0
-
473
-6479
84
20
-
515
-6469
- 1
- 1
- {0}
-
255;207;207;207
- Colour of the specular highlight
- f52f3c21-e882-40ff-8233-68e3e5495edb
- true
- Specular
- Specular
- false
- 0
-
473
-6459
84
20
-
515
-6449
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- b9730379-a406-4b51-a3c9-a8491583fea5
- true
- Emission
- Emission
- false
- 0
-
473
-6439
84
20
-
515
-6429
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 34d39782-03a8-4ac3-8ce4-9b4b5b91336e
- true
- Transparency
- Transparency
- false
- 0
-
473
-6419
84
20
-
515
-6409
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- cbcb1a83-292f-4d78-a691-b5e20a9d993d
- true
- Shine
- Shine
- false
- 0
-
473
-6399
84
20
-
515
-6389
- 1
- 1
- {0}
- 100
- Resulting material
- d1ae5845-db5c-4627-82e9-c54c822208ed
- true
- Material
- Material
- false
- 0
-
581
-6479
40
100
-
601
-6429
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- 570796f7-f90e-4361-858c-c1f014778449
- true
- Custom Preview
- Custom Preview
-
584
-6544
76
44
-
646
-6522
- Geometry to preview
- true
- 501744d7-62ef-4952-a5df-acf7700d473f
- true
- Geometry
- Geometry
- false
- cd554e84-a87c-47bc-a79c-19347e2f0445
- 1
-
586
-6542
48
20
-
610
-6532
- The material override
- e4f2c01f-e44e-43f1-b46b-56bcc7fb4ad8
- true
- Material
- Material
- false
- d1ae5845-db5c-4627-82e9-c54c822208ed
- 1
-
586
-6522
48
20
-
610
-6512
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 7bba5658-4cbd-432f-a660-fc5cb3f3794c
- true
- Quick Graph
- Quick Graph
- false
- 0
- baaac401-d9a7-411b-805d-a15c35db80eb
- 1
-
547
-4882
150
150
-
547.7125
-4881.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 167436ff-de50-491f-8e47-5da60e700291
- true
- Quick Graph
- Quick Graph
- false
- 0
- d5b87ddb-341e-4bd8-afdb-367567c6bba3
- 1
-
547
-5051
150
150
-
547.7125
-5050.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 93ccbc8f-68af-4b11-adf7-aabf23dbd5b7
- true
- Quick Graph
- Quick Graph
- false
- 0
- 2639343a-12c6-4387-90cc-a3114bd783d6
- 1
-
547
-5218
150
150
-
547.7125
-5217.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 8afb402c-3b86-45d3-84ea-d3432b3a52a6
- true
- Quick Graph
- Quick Graph
- false
- 0
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- 1
-
547
-5387
150
150
-
547.7125
-5386.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 08ca05ad-d4b6-4ba5-9d86-2dfa8d24fbe1
- true
- Quick Graph
- Quick Graph
- false
- 0
- 92510296-d128-4ce9-a581-482c09cbc15e
- 1
-
547
-5557
150
150
-
547.7125
-5556.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- efd6e82c-6389-40c3-b1fa-a1f3d7f406cb
- true
- Quick Graph
- Quick Graph
- false
- 0
- ce3af00f-0726-43e6-b974-248803cfe0e6
- 1
-
547
-5727
150
150
-
547.7125
-5726.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- dc664508-b5c0-4996-9899-a06cb3c1f6cf
- true
- Quick Graph
- Quick Graph
- false
- 0
- e943f2d8-f1f9-4bb1-aef8-c108ef86c002
- 1
-
547
-5895
150
150
-
547.7125
-5894.101
- -1
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 1da98593-0ce8-41ff-a667-7c2be94a0815
- Colour Swatch
- false
- 0
-
255;196;196;196
-
48
-803
60
20
-
48
-802.8022
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 41622ff4-285a-4767-ad45-9c5a68eb3205
- Colour Swatch
- false
- 0
-
255;176;176;176
-
48
-743
60
20
-
48
-742.8022
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21840820-7b03-45cf-914e-8d05118a8772
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.03000000000
-
675
-3066
250
20
-
675.8207
-3065.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02200000000
-
675
-3086
250
20
-
675.8207
-3085.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02200000000
-
675
-3105
250
20
-
675.8207
-3104.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02200000000
-
675
-3125
250
20
-
675.8207
-3124.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c6aecd68-308a-4a6a-b29f-68933f542f84
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02100000000
-
675
-3145
250
20
-
675.8207
-3144.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0200000000
-
675
-3166
250
20
-
675.8207
-3165.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0200000000
-
675
-3185
250
20
-
675.8207
-3184.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.019000000
-
675
-3205
250
20
-
675.8207
-3204.688
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- 2
- Curve
- Curve
- false
- 329990e8-083a-43f7-baaa-90fed18836f2
- 1
-
875
-3027
50
24
-
908.2197
-3015.688
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
-
7H0HXFNJ13dQmqCCigpiCRZEpNp1dSVA6E1BxbYS4QLRkMQkIFixN1TsiA117QXs2LHr2rB3V10L6rriWta18c3cEnIryUOAPO/3uD9duCd3cu//nDll5sw55r6y2OQkRKoqAX+MeDyeCfhbWy5JThBLh6QgCqVYJoWkCHAZkuEfM/gR4r4ARBSHKOBHTHCyBUEK9IWXa4BLwxLzWqTvvx20f/nEG6Nv/X7HLEKBpIiRkZBuAeimkYlglDgr/HIookyMSpMjkFwd/+JaOC1MpkgSSSClJbi6evXqEuKuSESCxKqQOIImFotLbHyReLFUrAJvEaGQyRGFSowoiWHhX2NfkQr9HnPwy67HSTPnTbtnbumLKGMVYrkKf3n4iDzjMFESQvz2pnp0gL+b25M9S1+tnAH+fbIkF/z7eMmOx0t2oz+gv+5eB/+dNwf9N/PxvEXqTxZmhcGfF0yGIyyGtzxZ/qv658cLFzxeuEj9scdLNqlHwz6GDfJqyS54fekE0lcT9+KPhFM3kR9vRen3zsxGP5zB9XP2ZvWA+L/4Fc670J/xN0K/UeMBNqmfDX9O4rFLP4NSsXfEvxR9dxxVdAQcH+JeOpIYwjja2BcRjMD5go9GYh8OL8pZNzf/gOgavYGEwamgJKYJ/FOLuOojS8YmUHViCgBhGwaEEZefavhl0yiRIgFBP9kU/Lroz5KSJs2AZA2QyZKIGXRh89eeJn2BOJO+qga8QvuaGr1j5SGiNFmySvOzFv4KWbKc9uGa/gGCEPFQhUiBTwEjfGaZkD4Kr5hhn0tDnxm/3VqgVCJJQyVpfskSieZUEEQkx8cjinixMtGF3xfTGD3au3nA/1z4PskSVbIC6SFFklUKkcSFH5E8VCKODUbSomTDEWkPKRjNihi6b6m+gSOb4aOYCpJViTIFcblWqDg2UYRI+BGKNJmiWmAcoWVWF61oPMSzb0iu6VzxjyKLUaQZa1H6mGYs31OnVFmED4XsU8PkCP6xxK6RwILXTbHrEKNqOH7G/n1KdZ/nr71PDczd5LfxV6vzx8d9XEx6KhOUVzV8ZFKVSCzF9KgTPoqpt0yBq1aCMaY+MoksWUFoOPh/Jl3VVMBPgOPyZfF8f4VIqUyUyYHu48uwt6oW6ItKD/i7oPerMf0/JITNdH/t9uVl8mJAMsJJJTF3b/z+oGXwwl47hmRd+M0CkKrhJMXoHy5FHpa+ub/l/mmfF1wfkKrjpCcO3UQFbrNCtqzZ4vkGsXICJGOctOOMIOWLvW3A0eeP5naxdngISCY46f2NJ/lr6hWF5Dx/MXhy9JaXgGSKk1Ydam9z43tN/8NG1fLHNc36AkhmOEmeG7Jyi1U3YXqDOYLAVuNGApI5Tpr46RCv9hHj8LxDXYyu7PP/FZBq4KTpJ071OfpHrZCtk5/M6/Lyc1tAssBJ0r2ur06/3C7c/GhLTFen/f8CkiVOqn5w+A2Trj+8ct7Mf7TTvf8NQKqJk2aOa/Xtzc2hfotqRbz5EGE/AJBq4aTUjw0c2sqzgteOm2W27POMfoBUGyd9e9Ky28U3HYP2dY10HbE65gMgWeGk7wcEKwYsWuubXaPkyto7k80ByRonNWu24vzsDo8D5q08e3Kn/5cFgFQHJy0Nfh1SsKVLyPy9bRuvHNDLBZDq4qQ3a2s2zntoHb4zplfcA/vmJwGpHk5yqHGsrUfwO0F+1LeCeSYNugCSDU5qNEi+om7nt4GLjPdbjqgduASQ6uOkh68+bJg9uUHA9mPDn1pvXbYJkBrgpKLWwtNfM3v6HFwmcI8d++kxIDXESeNnZ5mfffvdb7rLtdzf1k1IBCRbnBRfP/Jfo6lj/KYZ7VNIHYKnA5IdTgrPyp+YWj1MsGZIQt3X5pO/AlIjnHQmuX2Hv8elhx56uO7ODfO0CYBkj5MudVowcv7xwqC8uhsO8k9PcAakxjgpa8r1fV9WJAm2vXOoHSfNhhLVhJgOJ8VT6zbMEmb+LWx3PKTHa0BqipO6X212fcHKo4J1Y7ZOTBo+ejMgNSPe6+HG/humdAyfEP/iPo+3cCgg8XHSSnHSwt1r3YTrTLJvH/rRd695oO8QkgZxgJo5UKpUiaSxiH+yWK3MJikum9w5Wi3g6N7Q2Y8KRMYMasM8TBw7XPMyz0KgUinEQ5NVmIbHVTehooz0pqI6V6KKah+Vv+Rb4C2fjT1fdhbsu6rSUFHy3U1yTc2ShLm3XDrOmPhqkIaK2pJ7afvEN78H7xxqHfOmVk9rDRU1oU/Yx7PrU/02yWYETPdOO66hop7+uX/VO/9A7xlt28zlBfCfaqioXbnHfgTs6R8yu+ms4vNLCqw0VFSfqMZnmvYrESw90SGnRtT3DxoqKqq7XdLUlq/DZ4UZfZhUK/iLhooa66+SDVvn6X+w2rXJv9c8+l5DRS1rG9bU7+svYTuUy5ZtcJ6wQ0NFfclK9d0cyPPf2WBWjxeT+vytoaIWTBd2KLQf7bem21rh85O7WmioqOLxdepcnhoasCyg2e4o1zafNFSURWinT1dWNA/IDbrd85eW1y9qqKjCiL/zXF+ECje1WNO0lqfSTUNFzWy7Ns0+IsQ/My3bfufV3gc0VNS+pSfN7M0UIev73WxqduNkfw0V1Wb33bPvPr4Ozlj9zj2yX8OFGiqqWo+d80ftHxe++J+ferSbXnJdQ0Ud/zPi70ZWzsFLXVassNjgt01DRX3M7etnkesVvL+Fe52E3j23aaioe0P44gM3egcsd7jW++aQg6s0VNTMYYLPGRdWBe5Ie18v52loqoaK4v2R0DliT7F3Zst3bwdndL+loaJ4kf1fFFxfG7Tzmt1+k1l362qoqN6demTVi2wr2D1oRpDT3DeTNVTUNLuR9tm7LgTPGi1qePLPYXwNFdU3eYhP+5NpwbvMeuTZfFC00FBRIZdsT6/Ir+O3smB8fP1d7Uo0VNQHzwXCru+KA3b55By4PrhlkoaKMvlrRrKg/8yA6b0EAy/KArw0VNTW9+HrO39u6bvHYsffxyYsUGioqBaffvvTy+GY/3LTrfwp0cb1AMkBJ3V1PhTi7tPZb8eZwE6C4TvnAlJznDTcz7OP6a5V3hNqTckY9+AcdAFaEA8fNXnQluXGfkuHflrf8OConoDUEicddni7OGaarWDqmYW3e2w/fBSQWuGkdKfMzS2azvM+2OZA1JIBj20ByREnjQvZM+BM0ka/fUmdl83p16whILXGSa73+EvjPvcQzuq8omG3fkr4XU7EE/a7WntZSpug7A3Wji9P9pwJSG1w0qI6JWGd4saErnjd/P09ZWgvQHLGSWtd8xbcdpvhNZsfNTXi5Ny7gNQWJzVd2+O380mJfrvXbr+zgtfRB5BccNImo14tz4ZE+ky9mj3ErLvlOUByxUmn51ub/vzu99D1v654FHbx8GFAciOm3tQ1p2vWehu0vpebdXRQc3tAcsdJX+06/vpLu2ivw6v/+SPknIuMZjc82OzGlA0vogWO5wImvDyTYWE1trYe7EY1NrtxZH3Gzxu/5wbtKegedfagsi7pu0zDkpOGIgqy4TDDh2IyCe74J5V8ET9WJpFg8RM0EPESmUgllibw5TKxVMWXogMrGV+fai2YHon2/sT1cPR5sNUFNJoyjQSmLBYhTNGGx0vtxt7pErb/8rjE0LaFUywxMi1+osCpDv+8wQfj0EtwrvDynIW8GPkpHi/Am8crEJhEiFNk6Dhw1vK8XIQXM2WnakfAYEWpQqQqX5FKxB24mXorACCJPA2G0T9kHCFSJRKvXn20x1jjQBWSxOOVLvCYYgjDzxDhH4+X6YWLQ3U2cTiMrN8s/X4+ZLbLqV0eirqDSdjX8ElWpIhgLEiWCGhfTVkk4idhikiSLFIhfFUiwo8lBoAiIUJ/RfgiFfhRKUdixfFiJI4vFynAd6oQhZtpgDguDpGq8WKUFqoDwfLENIEpJWnJ6kInIU8+FrD6C2B1ujeF1YUugDr6lCX69EPEUnkyGk6a4SAzQVPHB319lYyP4BgxvuCYty+d/1y4JjBjoGW7Pms+TCBrA3QM2svhl8uaDFQ3qpyToRggFDEWnwzF1MmQDqfKGBJCRmUg1CqCkAU+0CKYtMTJkoDglYna/NQWuT2Cuwdvu3HzQMOsJgqyWKjHpYtFKaks9H70mycpqpntN616ulv3vtN26wE9IEEc6KWPOlUTQ0+WrMIFzJQDvvoRqK5VQwcm2mjVWEa47AcuuL/YM8Jrj9XjRn43+keShQwdhy5k2GUaTEw48LTHIdMVl6LuAIccKg7m7kJe3hgyDkZl4NBQPdX5KUD5yRRcSMQ9MTcN8ZkVsjrw5y6/vit8rbs+qRBErMdwIQLkhoRINe0RiRUrYiWcsnG+362SgPXHQjeLJH+dtHniZSCIFI7iQsRj1Cnc1sHAkNHWub0Y6vBN8Tl4Yf/rt903brYhvVdNX3GKOA7ho4qUbu7MWIBtg99G2DYwQYCiGpEskvAliDRBlchXIglwY0WplXGjhsDsj0hDn0TVEtZHQAVZpwJYPzGZOODN8KxTdDJxVmoTF4c+DeNL9lyRPO3O85oBk6cd2Twn8OQPwzVwvDZCXvFIgA+fSey8gIqOGMlo4Nj85bqY1wq9IUIuGCEqTK0T42inClth8fxit1HTNlAggq/DABF6uSyIqGGKHiDKS+GCCIhQFTvE8CY+5IgGpwiNycaphpFyiVil5hLUl8PF0uEsEcxv7Y1Xjm4WeHD2lxcNRszsT2ZXMLyPzi7ssr41JeSHPJmLH4WqKuGH2VCZTIKI1AqQR3NtCMViKoiNRZRKzeEZdQ1UeHBPCAsxmTmz4r7IdOOth4I17U2eCeOCjpBjS9ShobOGuK533rji6mQQE2/y3VB1QvN0dISleZRImgAYi7s+qOTGaYHUnsbIxpXBswSTQm9NX3Qg6DEJKXN8UDpWpZSKQAvVLKxoAc1C84J0RKtFacQBowtEa7iowQBl45IYlQ6YJq0iIEMnPytkYPLjbpIJj8VNWjV68Y2/iob7bNzW5vuly+1uMJhnsn9UgwPf1qwLREBoEIU4FvObtPOOqNbdLFQkl4ulCQRS8HX06Ew8aW9cr8aDg6FzVi0c5hQe0KmcllIOdK+HH2DOTIalowHdXIXTYoQEc0zZmDPUaWqLbOMjXnuiW9puPn+nAel1rXyRWBnATZEcq+ILFLF0N9aEhU0/9UbAKyAp2KrNUJES4cslIiniwleI4sTJgHvSOPA3QaKOx+F6jpQvUsRqt2pD3aXhfG4aw6gf0BLxdGALIyYAxC8wubc5bQE1XSf3tjH4bj4IJ32wGAq6uaUPxvjeD/emv7J/N8Bv/7B2mcLwk/dJ712d6V3Ri2WJJjVEK6do5gCgvCBQOQIgp7Q4wBkFSqelCHtvtQyhooLhhsWejECtvWy08Z5Hqt+BZj3rt1Yua0LWp+hoEXA0uj7VoOlbn8a44LhEM+lTa6BPi9N1XJrojc0nrTDx3XPo+JFZD3xnLrzZbtxIy3/Izgs2Et15wa9XBBY56VxYUGWkrEUJvkBToTiBv1DZiKTKNjg8jKCY55+uZ/wh12f72xWqV8WfHpEVPjokXeFjlysCEh4nJDHjCY1ORIU0je4+f2xak24//Ob16TiLt6z/ErLgh4P5E54CvJNoujKvzoJrPR9ZEoAfTDw4+eDNqdopaep+Oduj0OdgKU3bxU+gcQozAXR5ALpHVOhyALAxmTqpZstA+CnMiWN8uWUv6vw4tb1P+OaGZ9rdihRRVjz7wvvocoNdLksbUzdxy6mNrYG+LYDYFAkY9pg+O6PY6KSNa4ajH+NA53XccLuaA+qH7/FKudv+2qNsiqpBlMkS+ooDcV3v88oVB+AzEwDRbigA+LwyZ5tXI46K24rDNvvsOxIuefF04FvSG1n2SgbvArNY5InMzqyW8UNLX7ESWLk0uKOFqKDeSnMlAgno8ybAb2BEnJqBwvp8NNhJRBr2NSJlClW4ZooPg8RSM0i0lFj1aNS4wwmwZDFgWAMf+Jfi2lo4CX2jF5+qRSR7B0rjkFRiOPh/nJU12Fj5um9YiLH7vz6L1l7wWx0eOIAElXEIYB1dORqzMMzBR4HA3UkRXwI+zh+KqEYiiJSvGinDoz3tVCU1SYj+SDS2oVd18FwL5+CeqwfNcwXzgz9HJ/VoDb+cD95DocLek/Gt2tgtf2L0arVw9qCJW37U2mVLlslI9G7mvSESsSx9Sd180oP3WgDBimBc8gJuvnyOTtuQtVGwEBDysEP1dM/PHXa7PvXedKWvqHde1wzyJokQ3MsMlAapLJioLrEeYOJzwlQ4W0ezggkVtkTKiFJiUlpA7wd7fLYddak2ZcS0FtpOE/2bFDdcRvIEcGmU6qq5o9DgesiCTQ+dWyYK+d61of/E9U3NXrUYTV5MNEfBiPQN0T7q9ibrIhxIEFPGg1/j+EPTNCesC1+FL+zBWBzbXHIbq5WyoqYtMj83fWmPoGiJsRcQMKfdAOP7TOH2I6C0nHZVgNKKanBxW1TPIcIpCZZj3G9Z+JEdO1Qv0R077HIlK6oYAJAtBEjONAMLwAw8u0un7SRbFCBCLpzixApsfa0NI1DjExuKNob8LZy1NKDe7jYRlmSV5UvcTFdZpaSyAKNupusBsNRdXIABiaqSzSVscR1+pj2P7U9xT+qGE+GsMgYwKC+xec2cXX5VdKYgLV94wCzg3+kOe6zrBkpViAIwQ5gqVwBXVWOsaq7RZAc+BB2W7sDj18tiKzVZVg9svb2Ti63Td1b1nmFpEl1xTz0bxegDE1783bIoLOPB5852i/surjKjmOOG66M8pmW/CHd0euFG0ZLHYhT7Nqs2fOEOa+/9qyVvfxprHkBe2VVnA2KSpn1ixX4j9a2kvMFYRAEH4MeLsMQeiUyawBerlIRFxL8Ipyv5sSIpcPL5ymS5XAKzDYfKAFFMZEglS+Gt0KBK0TOq4lHgI+hFN75PItSr6IL4wLDBpWmKcNlXJUuAS1fq6AF8BkYQSbI4RMsAgnpegBM2+oI45QNaMpwP4rTMQ6fgEhGDhY4AFjrzYEWkNNofep+c7G4VMvHlji1pB2+s0OMmDXUylVM1eQGE0g/hmzQ01ZQIt3AO0Uw0Vx5Bc5I88uPhii+KGQ4Y+CgjZLVNI+b027dbOM/Y77ejMyfGlE+fl1NRQFQeHeRCBciNASlsXRI9OgTG86MUyYgLOovJ3BIrNfWCk4ebB38c39PNg9m/MtuC5Gxa5hg4edthm9VOHT6Tl0/D1APRl081aBXBOi9O1hUfMIh8ECOdrGwTLNUVmATItdJkcg7/af6DCdUz7Y8EbV146Uhv0Wvy1mnlprzCrQFUywQwMSXHHdUyOu0rOZKzPnQCxqPr9Y42ra19Vt6ucfL2qkLysr8ZPjANGjWhIsBBlQ0rOEDZ6LTR1BqzUqUWXBd04lKXLKze8UDIxrzjD/zbpM/RR2K5HhDy4kQIzGncb6vJY/HbhALntiU9rgs2Pmy66erKt+3Ja31obCGXSYBFp/ts5iw4dyTWM6QwD5a4Pw43eKpEhSw5IbF0pVyX9VbqGUrWp6WvTGoQtT3k00rIKzgK8BUBN2kj1U1K9xDy5EdobpI5oR612ziwKX2sMjKNYt5dsYvanOo3xzj5RODeW7PIqzd9YX0U8IX01Rs1pSwXiqoYy+lCFQL08iB6zXwYpPMs3L46qpMLVRObvnFIggJh9i8v5tR2NB+5QDjrzMqFz368dyY7S77ojXRnCb+u79kJ39+a8/0LjlS1s6SWTB0cJfjIYlkckbLFyIit83e4He6WL9w77I/0AzEvn5FllRiALqtqSkUwA0xWDmbwq4YZtHRYTVZUL4MVbsFSmQqYL1EsPGHp5NEDhKwgskhy4Xv2iE2UKeJc+O16KEcoVOgvzN7q9KYW08esHOA79bzn48TMktNkuwa/IFKVxpBLoUGqCGYVHuZiVvphQ5g5cCjdDmZhG+WQWdJkxVAlxwzK/Mdmcvefi4MmPbGXvpzU9G55QuXyhg6euCK3BW5GIZUd8nbCPsKjunmpuCbn8La65HbyODLkUujc3udCG3rs7l21YS8A4NERHIDbDABA1aKTJ0qYMjTliRGAkTsskzuFOQrXLa3T/7Pl78UUU4beyGDKsOsVAYA5FwCbsw8TjmYtHouj+Z+dOGdDUC8nzqllN/R64px6nL2c7hS/LVB7x1lOnA844CL0tT1O8KA2Gw90zuk252CBXnO6qWVO9Lg0SFWlemCE9TEuRmwsIBhhxcYIfkKLvdNnz/BecGJryNJ/948mv25vRCJKY2YEJaxg8wzqCfgjxQqEr4Aj4ZV5GHGnZgAxPAgNdyN+mZhT88jKmzMPc7Tn4aeZ0qkKKA8eUJxHYG7NhnmNyCUp65OH+ea++Yx05m8ix45WeMwaCv5RiEUS7XcoGpVGu+FyROofwk/Cx9AupKWW6uF8LPoOAOUD2uZdtgaQ5UONDlysQloehBswaXtpoS2XK9oEqx0FZz9cUokTx8cnKxF+bKJIKkUkjC9+x7XjkxP3s7wObfzl0ihHv3Pk9SZfbAT6ehNB0PtqipOQx4OQbGRaTYEFP/L2VYnXaQKUq0xdleuff/4p0SVq5pMZA9e6kiUiBT9RnJAoAX+Z1cL5Id8vTz8+IXTDt++L7Kf9OEEO4CLxQegBnJpSEdyJ2cfFHWtD4E5JCa9El2C6mTBJrFSKgS8YS2IToUIYmSP7devKm1tXB++uOeF108nPD5GZg43IkL9RSqkI5hTs5WIO0CZVzxzIH13C686CJPiVKE/A44A4W4FIY9OwDaAefJlcNALuF3miv5V+gnlG9cq+p2jiZB8yd8b47/IdPyWSj/RHaYxPP9JPolYE8/iczCvcU9XRdumm3iPSpp5xGRzsUcpBZaJYmiYFrhNgH2CXVAZPtXmCnySykSgR/uoBSUmiVOwC89JW6K3lt1784z17m8M/SxUlCZQ0s0SmtA38ckVwLn0PF+c8qpxz8KY4no7rJHVL10k4FeHKEGEvPwdT3/zde99dG/GrCVkRsvpMpRS9r1y54T4E9FPP0twqD1QR4n5qHR6Ln2pnPDry+MEP4UfNc585dhrtQnqr2j7JSpUsiY8XTie7qRBTttNArQUSIOlKPPMAjoFuZicgsiREpUjjy7EBlVaB0lhJchwSKO2NSPHTA+zOK7WYJNez0vhAodeGhbLlMoXKTyxRIeqa0dpiHwH3sPcD7LOYcuU94F7ZftbdGsYYyp/ARiUj4NHKozevNj73zEtH/6m5ki1167WfTxZLYlS6WKoplZzsAk8kP4LIeTHpkWIQe2Xu1ykftX6UhguDHj1TsBWBadI1u8ujBu8C96/zHtyuBSX6+Y+mMAUrqo7QA1ZenFgV51eqziVaN5jhIRf8EHR2HuQ8KDFHcI+PuOjt4V1igto2qlU1JwID4qPw/zU13R7yHTyiwmRdNjVmoOE2tcZt5YXbMVzhduGgig63125opHw0q27A0tmrn1m8OrzUAMLt4iFczkvEEAOIGfLy8ioh3C5aLjx6P6aZ36Jnj/MRVdtXBhFu5/3CGW7/YgDcqZRw++Y/a6xFT9/4TDRftWL82AcRBhFuywdzRmyDDIA5vKoMt4tmvrBay3/us+PL2Vcpw9rNNKhw22MQF/MyB1Z10GZA4XZWYNfTt5p39N7Rxyrco+CX4VUcbhcP4LRYA6qacxUabmdcbPVnx5s1fNa+a1fT3Kp2nkGE26gPwRpuA0WI+6n1eP8Hwm1qF4YqDrfT47nCbT5SOeF2/zhL9+6DewROanKvfyu7Hbv0Hm7ruZooDCFj4rlCyAKkosLtfYVdJ0muPPXfJGkvC3H+6xe9h9tUHaEHrIAccWCVHvf/Vbhtw6bGDDTcpjaHqbRwe/oZrnC76FRFh9sW0zdcz+zfz2dh+IIfzccYrTaAcDv1DJfz4nTGAGKGhw8fVkK43S7LaV2XXq3D5ya0q36u458HDCLcvn2aizvTTxsAdyol3L6VFWK/I3dV4MLX99KeRDlYGkS43YWTOUCbVD1zeFUZblsE7mx+vZ+FYGF684d5t34EGVS4nXWKi3kBVcM8wwy373VZa/3joKPPBI/ZO1taNdlSxeH255NcnNt4sqo5V6HhtlXbFg5dW0YHz5p5cF73NOUmgwi3UR+CNdwGihD3U+vz/g+E29T2hVUdbp/jCrcLz1ZOuO3d1mfJsN5pQXOWxVw7+rvdG72H29RUcD2EkPJzXCEk/1xFhdsv5j+op1JFBe26Nf2r1d6fH+g93KbqCD1gBeSIK9w++/9VuN2ATY0JfqQo/1SNC9yV0OxHhCJmFiWuVbdZYigtCr+GrSxlE1+FCKix3uAlZHzKKFoekaY2VjUNkcUOR+LUN3E+KUMETv6AloLkAXcIpbCSuDdThRnYtEFCU1dcDQQcsBNTUL+XPhFaVRVE42jpVa3A+eFuN29EntgnZ4BTWBqvfQdOcAyqBxGa3pTEVrYRTs2IJJ3UWJNIUZJcAr0QgJpSrEojojN/1lq1+T+//aOoY03fBXUVP+xeLfyNEz0zX2xYhjUOnKBv/wRClCfhgggInQF4jKiM61ASrnZkrEiC1s9nLyPcymZqfPPzc4M3Bc0I6HeylTW3YKMDMjjy6OWyBJvanlkPgi0fzsW1wmGGwDUxT20VGvJYrELyv4fa78yJCl76PXrQjJ9WTic7jL7iBLGKHxmrgIfldOiu2yIsOQk9T6fEb0XVoFKMls3nOt9I5RSnUFAeT6tTX2wT1pwYBV4kbLgp+gXqo2uwIokpcI7jxamlX2ECuxaoi0JbosKXHK/xEbwWOwFZPPGNPIxz2ja8awmkKhHI3CgfuswNeNVSOK0gkYhkbNmY7dP6gnvXSb+H5PitfqfqakduVVGrN5IkkvOxs6JK7fvmtsbuw7mK9REU8aXISHgJFQLs0LBW1o7aLZ3jCWnsJpO1NfsgZs/ZfAoWhGMp/ZqzSafCcrVRbsMQRQEfh7lZ4n5Fkv+AC/6bxj1aOyPrxEM9VvSnNo4vr6qDdfcgPNlMqi4fppZu1smG18Keh+sguUXzjtKz/nL/nZ+C78UJ3M3JZ5yx++lnnPHrZeETcfDaK+sLF0N+TVkV0evfI/X0gE/xJi58gPhUhSkwR6v0pGBAdOdR/+hWaa5WlEiRgKi4mPZpcK/t+3vbBO/vJxw8Z+57cjFNU+x+OtPw63p3q2B7Z06u8AyUKzoty1mhCk+OxOHKl5Exwb2Kg85/vBuyUBLcZ7vzYvLpH9NQ9H46Y/DrFVG3FVUncD2O1jn6kbuQZ7tZt8Ic9moMYC3UWIm4LDy+jDWyDDt3KmT2948Jwm5X35EjAB9sAHoEQBAqApGcTVyIOG0i7Lodj8Wu580P/jDwp26BUz98V5mfuEsuk45/o/ZdeLqri7uTDTh/ZKI4NpGPSGNlSXKRUgk7hfAlYAZBPx83/9oF/Lw/EjpH7Cn2zmz57u3gjO63mJ6XLpPYdR1KultvxEu609r0PIItoTaUtxJaY9zVgMZejK3SwgK92JMwvrjk1V4Lhz5R4atUI/PCnVMOk4WPzbFREyrZ+MNq1zyIoYc3QzebAmcUQ500VnciLsDKvpDKEEtkIxEl1iMA7oXDn0t9Sv7oMOaW31R7XqVVZ2B7ExQwWybA4GYEAAyfzI3YJrPBFNqgSpOeCm38hx18WBeAQbidtZ6r0Eb0egJze4PHnFqvXk+Y1zL+smJvmL9gyadV4xuOTPtDD5jn7+DCPHUHgXljNszD9vldOsc76ZM+wO4n8augOuTQPhTuN8ol4li0yiTdeLEhbR8KfDDgEqjAnRJ+EmkUrWzTNLuR9tm7LgTPGi1qePLPYXyux6LvoJHp2vZMApr0dh6AM4Npp8wawOmUd6qWuior4a0SNtwCbSBH4iX8JjP0cmAcIQP9487OMTpaw/fAXw1Da7WtV0jQjVjolljrNZqMmGPX2QfGngd9XPgRrmC5iZ9YAfS8GLjJ6AoRmV+M/HEzm4yM27vIL3t+/WdtUgaTG8wbCeizQ0CbHUaU2dHk7bH7SxznBy4fnjh8+4hNa8rbrgiw8yxkp4eAIfqAXfBS805pgGRUBkhNI2Gr1jidUEpa5jRm/u8vwzfM/nPm26NScnEqI286St5lovSby4kG56vPCT0646PDa/O6y/SAkhMnSrdzT+EyqJYlLt/CFktSgM6oFgBRNWKVtg0sdMElBrYNpPV4OuuKIoXr0yZs+nRx0ccVrn0yQvb/Fn7MvySnObmIe2mrFe1XcRuUNrKQ8hH1ABb0ti11/MJ7hwqinJqP9ujWe2xzl/A2WunavslDfNqfTAveZdYjz+aDogXnaq/G19Lr0JfStG043lrIC5gEIO/kwxIf3J7IoHONcbgYdK4Rg87N+p5+YPW86MC9GzaFeT1re09fOpUzTaIUC36KSCEWDWVp0is7/+7AbMdYr+W/jXnUSOUs5ka/Lz4UP5yuPMLLVB56bjTKB9zrMglXHjRHO7U1yj2q8uDSsTalyqNU0BlR8zcb6efU4CevDOvj85JXruzBiRqbItFlZ0LbDQJPHJICLwZIrNuhkOA6pCmbDsnOf9R/2tPPgQfy9xzYMfxxCKXTgEiKSOhNR9nUh5OAL4d3aKQ48aUyFYK1rVEhqXhbV+ZQOeSS7ekV+XX8VhaMj6+/q10Jw6PQYOUxoYru6/SGlgBe1Gy2QZFRKmfZZNS8jxJRRIHHJ762la8sGc6MWAnsbgpbysSJVfi7A8sNVxifpK+n8FG9x0Q9CeAo5NlmAD529eGlT/OxCBUpEsTSECSeJBSW2OXeMGFc83oN7HqUTK55lbJb9Lej0Nc645QVCmKEQiaH9daxpzIjngrLUoeXiOQTS5joESiNg5XZ1dJeA16Ey54al1AfWILntGDKH6ahi0USH9hlSM0a00iVAhElqX837qcQyUsVCCaqzdhE1WBCtg+eC4Rd3xUH7PLJOXB9cMskPYVsVPnXQ8hWnMEVsuVlEOqBb/CYU82JnjCntq3XA+aFE7gwz5xAYO7Ahrnnr71PDczd5LfxV6vzx8d9JPdcM/FXyJLlZMwtCcy9ZZq9lI3YZjVDwCHgJ8BxoTX0V4iUykSZHOgInCHKaoG+BGBUBw6QiHCSKr+AVA0nUWcMIFXnMfsJ5oG+Q0jwQweMucrZ+/D1nT+39N1jsePvYxMWKBhwotsLCiN5BCMxnjRn48l/oavd4tNvf3o5HPNfbrqVPyXauF4lu9pOS7lc7fys/+Ou9hHjBa4lt3f7Lg+y7txKtKpfRbraIVGTB21Zbuy3dOin9Q0PjuqpB1fbdimXqw24VzGu9rUn2XsmHo7x3+MkO/b+duR7Q3K1UUhYXW0ACa5DWrDpEANytbs6Hwpx9+nst+NMYCfB8J1z9e5q0wwtlbNV42rLgatdvBrWRa8wV3sUcLWLVv93uNot2UTVYNy+4X6efUx3rfKeUGtKxrgH5+rrye2jyr8e3L7EtVxun9NaQj20MnjMqebEcHcB85ZwYS5fQmDuyIb5l6EDz7S32BC67nD177zE7wuYWrhon0bRNBQRKWHOP7q5jXXnBDYP7wmsXaLEYYe3i2Om2Qqmnll4u8f2w0d1aSqj7dpzGyEvIhogl8+UKJEJkeunUwKktbqzbhIGAOObnZi6SBg9cm/4zPbP/IfnxlGiZkM6xlAMAPKAABUzOUCPnFGAdGu0XWYzoY5Gdu9m+8h99370Ssy7PrtqmwnB7sooAOZMWQ0xbigA+NxqzTa3DHS3N90pc3OLpvO8D7Y5ELVkwGPbStrtTd/GtdtbuPV/u704f7YPb7lxfsoE4caBvgdf7UvurYfd3kV1SsI6xY0JXfG6+ft7ytBeetjHlG/j2sfkb6vo3d5Z9r+Hd/15p3DL+on1kwYpbfWw20tNG9UDSkCsOVBK31qBu73UHf4q3+1FJYZ1txcghetTJzZ9ajD+4biQPQPOJG3025fUedmcfs0aauMfMgSPFe8ebjzB5R4mniAgb2PwkA/vd7X2spQ2QdkbrB1fnuw5Uz+QJyalBfR+sMdn21GXalNGTGuhjwZYczkbYM0lIHc2eMipRkM/kFPdPD1AnrqFC/IuWwjI27JBXj9+f272qXPC5VufjDrfeEwOOUVZmCqXyOIYOmubsCDsiN9BxD3Y+TBlkgg9FahEEpIQrVtpL+j9akz/DwlhM91fu315mbyY8dHo2dM4QVv3DDbVKjwF12UY3LNiAGLE5f8wHkKwB2F8tz9s/BqG777it3da/09fOguX6TEe0nN1ihx45OkyACiO6XBNIswKv6xTl+yOvREgGmjRrTgEni2QKcWQzgfPJ5bwgaSo5YQvApNVBGulxDKieNn0XTWrNcF+2TOmnKrXKYEsITXU30NvDVxK0ntOuBMqMRxw8S4bRB9nI1oMS0i1lschXPGJFlfKLlWiSMVPEg1H+MlydB1kqAgWIWTtIbyx+pBWK7cog5dab0iYNWurNaXMHT4sQ5k7gqJv7uW54sLuy8S9Lu6osNMOLOkInAPR8J6oZ4BQgWQEa5nLodjJs3sHZ79QRDfdnkHe8TQnxqSDpaZUBFgRnGABUcftjwuPxf70bVZt+MId1t77V0ve/jTWnHyQ0Eq9Tcq2GsdWFXS/UekOK26JgGiCHwEY8CRKvChWBYItkUQmTQCxlxJfnXHDvwinK/mxInhqha9MloOIA3BoqAwQwf3YkMlSeCvcc5HKFMDGoSWd0ItufJ9EkTQBWw0cGDaYLycCfGgZVLIEeDJe8ziMaqSMnwQX8bWzjSUxd2/8/qBl8MJeO4ZkXfjNghM2es0Uygd0KVV3FTC8PtPh6RggDllXdLKVdUptJf5AjC87rJ3Qyu/m8oBtIfYjb20/WUePxpKqgcppLOHx8ukQoTls2r/LVZ2MZXOSPOL7fRAzHDC2CLiH6tun4WOvhu64EX4gunuPqCpdUYSoFF3hQgXIjYGWOCzrrHSHwHh+lALWoYSzmMwtsVJTL6BlK8fBcpVtmLOj52eMmpbfJ2T/xi7f1n4qvEZOEghTD0RP0dCgVQTrAjhZ97nQQN0ZruWkJhFo63VgEoiivOJ4qN451uiTz13xNF35PnDCfen+oQXTKRtj6Hh0JYRd1jdT+G64lglgYkqeO6pldDpW7RgFjRVAJAXB7KIOwNiVVC90c/5NuGnhON7CWa8pESQ+MD1MIwgVAQ6qbFjBAcqGBE61MsBpjVmpUguuCzpBc3flnrBKCpxd7WFGanvrReQQRb3sTw9RSkkVgVAAJ0JgTuN+myuPxW87t0wU8r1rQ/+J65uavWox+gjZGw0BPho/0jdE+4UDb/UpdJjfQHjCIEKMB78CvyuND7BVqPhyOKOAssXlFfpeuOs2VivHSTH6h0uRh6Vv7m+5f9rnBddnfm66F01QdDiPXljtNHYenbHOTES10zotK6APoIEBc2m9nd27dqvnG7B5wV99RIenXqIU1YJ3MxTVQi+X5SlR9Z8eDpufhQDJmYSwoC2ItMgAEYEWmyG2RQEi5MIpTqwA4gvozMb21ublTzNqTfBLrycakF/8ZDd5WvoSN9OnZSmpLMA8PT44hz9bFrRyudE2ox/n4/UAWConYECiqsSJwmwG/Ex7HtsfegEarnpyligvObSqYvIBlePQd/4z6ksbjJp0wqIuWmgFMIOeQGsq8I50im5TPgeYwtqkvBlHU0/Z+02uPXyZRQvVBD2w1omTtbwqYi2Tf5ypW9WamiEa+pyRmTY1zFxaZzv6LrKbtr1P60PkDlrGIUwVvbGrFVGcBdVJeQLIC2pNUHd0iuGG0Y3HYhi9rzd8kNJ5l9e2gb/Yzup7mJzoaQO3DlRw6RO20UBgYVdEh1It7j6yJAA5toGBDhNXOgwaHJZWaIkDQqKVRXzi0E1U4DYrZMuaLZ5vECunsh+Yxg7GT2m7qAATkh4Ab6SIKSGJ5yLkPbpf3sotghANUOByA0zMhN6GTMp3IqqOAPRQw4r+hOk0JVyNlo1E4piNyPXkGTY3PUSh+5b81Hp/tqczWcegBdwY6trg18vSMQv9nJ2DI38OWPQi3PP8oK7ty7syAWD2gjAbM2X1dHFGYS7vknArDfarV7diZVIlEpuMigfMcmBe3Rz5wIn3Pait98rDkYGD0pd0J2FpWTouPfwlEfWtEgpccNgGMcGW6obChqsEdzaVcL52i/eenWShU/9+G+x2bbyQWuVQLhHFIvywZImEQRewOcyuxH1SeB+UWbE0RSQRx2FCPlIM8w9BmKLQXhPsOCNI+WJvG3D0+aO5XawdHnI8J1M1Rg2ytoYPlhu8B9C1ZNp8g0WYH90t79xvAI0aWrNJBWsMQSUJEWNOrLl04vLWq0F+izKO/9r/w4tAsvuMDkR3n7HLZU3niZ8O8WofMQ7PO9TF6Mo+/1/LOZ3htmU6RG4Nk8tgDlwGj3ushRq1RM5ejZyCJGpQtJiz604/npbGC/HbdcaszfWes76Qe6zgAsK8pUOm6nsWQ7SAJHGglXm3UlexiAc1j0qTI5o4tNA4gOcWDFxaROIGP6N08w8YAp3cBERBKfsL/5RXcTdADSRkLBgCBNVpGKsZuUw1TOWZJOXtwOKOz4JipjQzngc6C3RaCLPFaq9BXwG1VYToxzFXIwsNdry2NTNoe/KE1TfjP1PKN6FvxbAxgV6uCChQEWeFAog4bqg8eCyGqs33hrbb+dWFe7yLvyJNE8iF+ixRGdE1Lb4JW1o89FO12+t6f+NJ/pp6RSE5z18Mnhy95SXrU9FdAw2iDn0Bbj/EVQXNHfWCqWMPy2uSanjDbXEIAHMhtubSUyZLxwmWjwoKb901exo1HlLShQq7WpYNovpYeqiLfhZClSVg8I2KnFGodIoVbaizTyzlhzBi1HLC2IFW1nHhi+//WPj7FP+bVbq/xXPFgWDMmIfdHAEQ+NzzZJt7qvd3+zsc+iVo4sQ+xl9HvdxOXpFCBRkqUXqnDjiaFZQoPHVbGoekar4Eo6PeGwEvhsBdcWIZOxZPQVbIknSanasOtbe58b2m/2GjavnjmmZ9YXlu+kqamqRD65fiPwDKmUxLqmjmxhOGRHqimQlDIj38q2sivXx/NzfhlIN+kySN6zwTWV4i6MRh9xn3Fp1HRHt9lgv6VTs08F1nfZ9L1o+KuTn82pho0d6AScL1YyIWtPrNUFVMJoxL/8ArbDKujGX+wZRtz7awaAHlDWgVMEUYcemDTI+fPG5J0No7Hl3t968Iovg28D4G3wa9XBYy/wzz/WfWsi6CdWmfFv7BWxmuB2S8OJEBs8EAmlLw1FMPZVBZ2+l28KQqxiAYeKCLWUNlrAV295697tk5foF//vx3R3eqDvUjyzEciy7H6FV9mwDIjpwnXOyIqBp2UPfJebqc3a+JTheRij9a3Jq5Hm+HIlvPLU8GC1flf7A/6rF+jFlosgrWMlB/HZkjjJbASKx3dsjdcL0Bj+zTVnLhOi+YHbhFbsdjscg7hoQ8HzR5R9CMOkPaT2lwgFJKPRIBBlSH9Rp79QanEr1T5yra8tyQlVusugnTG8wRBLYaN5LpcRj6JKDXtT37COLkmMcwiGAysbDcccwjndpSN8KOgGHvCb05dN8cfSTmow7PHnobN3AN3nmwbp1BVu555dm/LG9ABdelIRYqphmdCjdlHle1gtWsbqZLVlnLSBUi5yvFo7B+ZYgoNpGvTEYdC7hKy1FOv8ZMzyHNu64J3mHvcrXvh7nfydMbDktXuOjVimBP3iMu9gBRNVD2lLX92bQ0DMLKeGgxc+60b1DYfni9wMUDb9258RfvGMeOaPVoV8/yrFRQHBtqKFZOxwYy1pqTsQW/VzVj4U2ofSznsludSKopYOQt1XXURfPrfeLBA+CoXvzMtEka7Y5OPNy0tuexmFaDOehFXZbXz0Ev6iFJfdS8v8NZ8/4OAXkHg4d8+olTfY7+UStk6+Qn87q8/NxWP5BTHVE9QP75KRfk+U8JyDuyQa5zLb/aao1V8bX8qNv+GrX8qPuAGrX8qGuxGrX8qAtBgGSMk6iuKyCZ8Jj3xQDJFCdRBYVWHBBqW0YRk+51fXX65Xbh5kdbYro67f9XD8UBO7ExuXnwSdcHOyz8NhjHDb350prM5HpY6qiPRKaEm49oOrD2rfaa+4lhOa9EWP8KGwBNUIBZCzqVlal+cPgNk64/vHLezH+0073/jTIfkQYO04e0XSUG9jz6BphJt5liClj/Ivq6TodG7LHcbbQpuAytXyqDZ0zZT5k5T798+rFYGp63tFbNGo3qjS9P5nbFJkXKAVYBN/BNHFp3qBhYVOE6464uG1b11QdsNLFibhwW182quF3rwAVL+v3SNd7kvuFW6IEoAZnhQOnRNd32HVwiiHmFTjYUM2LKwcQB4iQje+Jt0kjzYjv+/vC9QzL7xfdt3LA8MqaHehOoEDGmd0P37fN13TZFndWL6hAiDB68RxgwMyTdxNx8YVh0g6/Kr4FrbFS3Ll4NJBd/qpoceAjSxutcIEVf1+2UQCtfMfbm6sSnUpHBmtWxKqjNJ/g3vyyzDz1gtah+17GLW5Jz0olx6TnpakpFoGPOiU7+NcL76cxjMYyv+4aFGLv/67No7QW/1eGBA+hpnXRLyNZ13oF8OkB9cHKkDM/Z084QzhzX6tubm0P9FtWKePMhwp7hkZgzTbVNM4FJ/7cAbBe8GdKZ4PIZ/5ZutQS0SvrfZCa52ihptvfGzctbnn84bCJ5fxxdHWMx6yRimUnPFBVX3roCAKwCCBZjV20v4H/Lb+lk62qjYCFgprFDlV09eP3urn38Fs//WOd91DEpWRMJwb3MQGmQKtklgDDxOWEqvKljOboyE7KpJxeqLCEbahpURmBCNq10Ekx5AdDgeqgLmx4y/C7YqR8bOLSVZwWvHTfLbNnnGf04nlB/XbA9vp3i6ILt8VXvXbDffnxs2fznS147P2+sa+Vbp7Eeu2B/PyBYMWDRWt/sGiVX1t6ZbK6HLs98CA9rP+HCr/rugt1E1omvMBEFTah3p0+3oXe36rUL9s0WrT+FCDoItjfpcHL/S8V9PeCT/pULHyA+BtlvWc9dsB1dZ4wumbXed+4BI2OHelNaVXkX7EdfuLiS+cWQuFJ8lOCK/rtgRx089sDb7LEgw7wrktTF6XGVd8FG1Qlrz+eNXyu4C3anHj6nN/aaIJy7buo85TY7SimtKumC7fGVC5H8L4Rd78pjsev/bV2wvz1p2e3im45B+7pGuo5YHfOhgrpg5/x7iqMLtse/ld8F+8Igryuy0L7Cg+03b4o7du4fPXfB1rPxh4cxMyGGrF2wAYZV3AWbas+rvAs2ChhrF2wAGD6Zu7FNZoPZnaJKk57q31P3MvSwPeX0mWt7qugfAvOf2DA30BrdzZqtOD+7w+OAeSvPntzp/2UB12PpsUZ3B6PTHDW67/NO/69GN8afwrSTXe4eKPSf0qNdbVOJxws91Oi+uezsnEcOLcOXf6t2PzfGqtxrJoCdLpCdrNWnjY1OV3CN7gWS1VfXXlwftj1lq5tzh3hfPdTontaxkD99/xOf+aE3kSjBuiI9oATEmgOl3bzTFVejm1pDocprdKMSw1qjGyCF69Pu/2X6dGnw65CCLV1C5u9t23jlgF4ulaRPrUu4eh7E/PhfzwOcP49L2n26fH+m34Ylnuk7Hh/YpAd9+mZtzcZ5D63Dd8b0intg3/ykHjQFr4Srmn/ej4ruedB3xNzAFO9k35kdm1Zb0811tB70KXWRQA8oAbHmQMn6RwX2PKDa0CrXp6jEsOpTgBSuT3uw6VODiQmo08lgq8Gbf+cKCc5+IyD/mQ1ynTPWahGQV0LGGnWbRCNjjbq2opGxRg3oNDLWqJGGRsYa1WhqZKxRpYGWlgbnNKMcOdQ41tYj+J0gP+pbwTyTBl30kJbWU2+crMw+wtTK/hqcpBY21uAkNY1Ng5PUjX3t+wg3GiRfUbfz28BFxvstR9QOXKIHnnix8eS/sI/ww1cfNsye3CBg+7HhT623LttUyX2EbYtOcfQR3vji/3gfYWnb9Yu/5E70y2v7au26li27VWQf4fj6kf8aTR3jN81on0LqEDxdD32EzYtOcfQRBtyrmD7CLZ3XC5beuhW4PVl1/u/jg4YYUh9hFBJ4KJGxjzCABNchAjYdYkB9hItaC09/zezpc3CZwD127KfHDI9Svj7CxT2pR40onK2aPsLFjkJeYTHgY9cK6yP8t6PQ92zxf0cfYW82UTUY/3387Czzs2+/+013uZb727oJiXpa06fKvx4c+IJ3XA58+jtCPfgYPOZUc2K4+yg5z7kwj3lOYO7LhrlBu9pUB07D1abKr4arTZ0xGq42lbHau9rhWfkTU6uHCdYMSaj72nzyVz242kI2ntSIXJKyPnmYb+6bz0hn/qa/yf1R8L3+UPAPcJkk2reVaURkCUj54XJE6h/CT8LH0C4H4Exy+w5/j0sPPfRw3Z0b5mkTOB+L3raF8gFtT/UDZ+us8WkezxaojULaaiw8EFCdVoucKzOqCSakRPsiWIM2GfZ5ShRJgblifHGleEjkgM5x3hkjfH9JUrV8Qs4B8MVGoOcAEAS9nx53AroWQrKRKVcqD3YkMa6SissmsQBa9fQvLi4u0eVcP5/MGFjZKVkiUqCpBRLoiDDyJuvE9qyRK38KPZpV/2vHv7fsonThwgdh6MJFUCqCO3JO7gQYAneANirRJaGwmTBJjBVYiCWxiVAhjMzZ3Ue+r3jgrPAJJzx87U9sGUNmDjYiQ7hdSqkI5vA5mQO0SdUzB/JHkznEwhwbczoLkuBXojwBj6MEtyLS2DSsa08PvkwuGgGb/Hiiv5V+gnlGvTv/a/9dqd+813X+q/WjXR3JhXRrRmmMTy+ESqJWBPMKq3Mxb2PVME+LTkzGZXCwRykHlYliaZoUuLOAfYBdUpkUsg78JJGNRInwVw9IShKlYhcY+She1Kxbr3V/hM06cX+VrK9fIaUcTSLTSQj8ckVwLp2Tc9FVzjl4E1wf0yk7ri62ACOWJnArQrd7sUeWi90CpyeObvnyXNuPZEXI6jOVUvS+x+WG+xAwdjhLc6s8UEWI+6l+PBY/1c54dOTxgx/Cj5rnPnPsNJqyOe+DLclEKJAUMTKSXvqRLZm1tQCWrVdqLOugHcgSEFkSolKk8eXYgEqrQCyBM1DaG5HikQi783qp04KR848XBuXV3XCQf3qCM9ez0hMJyPTafcE/cplC5SeWqLAvZnL3WXPdgbw/NQHYZzElGHgAzmSY0FxaziVZfwIb9Kw0+oxaefQum+us2JfeOHzyjSszx7+aQS41YE6MShdLNaWsiJfaHaO8ES/M+oHIeTHpkWIQD+820anvTv0oDReGL0tBFAoxS9PjhpbBv9R0uCVcV9Pk7KQT2+uVfwpTsKLqCD1glcGJVZxJpepcYkXSDA+54Iegs/Mg50GJOYJ7fMRFbw/vEhPUtlGtqjkRGBAfhf+vqen2kO9Qh9v+bGrsf11c/6MurllTru/7siJJsO2dQ+04afYXTtj01cWVDzwJX7PTsKgHw+G/CFch76SpTq3JtOziesAna9jEB8eDDlQPb7OK1+SpHgtM6FlHegGEukOEZjLNe9j00saMpiMrootrkzo79x68t8xn0rCGO2buTwqu0irXEJU/TblQAXJjMLGDbmf99NfFdUJiz3prZ9cJ2OKxQvAyaOtgg+jiClm3nJN1qqphXaV3cTV5PmnT2SM2vkuLzze+fOxNd8qeZWXWaYELr6iWYSyykeOOaplK6+I69Zez3+43Tvff5n2g6/LZM8i5SZXfxRWCgyobVnCAsqm8Lq6Hb3gcP7L5tPdGk+WhWz7euGMAFWwgQss5EQJzGvfbAngsfptQ4Ny2pMd1wcaHTTddXfmW3MvFEj23K5dJgEWn+2zmLDh3LN0iEZfej5e/AYgrZMkJiXxYBRldqtGlfMuCk+KpdRtmCTP/FrY7HtLjNevT0gudaBC1xDevlZBXZA7wFfnARRcKvukgvPcyZw0xtTxLaVP6WDAXCMOC8dXNnJ03PB4XGbhIGThp3Wn3InLo1BemBzA15iullOVCURVjOV2oQoDeI4heMx8G6TwLLE6+uU4uVE1s+sYhCQqE2b+sNdVyQXb0h6DJl27WtDxwvRnlUCR6I8OhSOy63heHwPtncr5/onlVO0tqydTBUYKPLJbFiWM5yllFjRlq6fptb/AE2wkLH3fqakKWVWIAuqyqKRXBDC9OZthWDTPoxfl12LFwC5bKVMB8iWLh2qmTRw8QsoLIIsmF79kjNlGmiHPht+uhHKFQob8we6tXOr+onZfx2HvOOfmVdEHAJLJdg18QqUqT0KeNBqkimFVsxsWss2aGMHPgUDp5q/VLF7qlyYqhSo4Z1PZcp3x+Xw+feScX7x8x+dY/5QmVyxs6eOKKHJ7uLqSyQ95OuGWzuW5eKq7JObyt0Oi6IabN54TvGPT7nt/k13dWbdgLAEglALjNAABULTp5ooQpY68rk/bN2D/mk1vIpss/fbVv0DOjSs/3QwBqcgHQ94YZ4WgG8v678nG6X212fcHKo4J1Y7ZOTBo+enOl5eM8teDKx7GxqOh8nJHP69S/PHS71+5Pf89bPjIz2ADyce5bcO1u7rYwgKSCmzdvVkI+zvhf3whq3d4WuupJaFz7kuHdDCIfJ4OTO3GGwJ1Kyce5fdKo9VkLZcjCcSWt+rV+etAg8nG6czLHxhCYw6vKfJwdZp2N5v8RI9hlbyv4w75nC4PKx/mzBhfzTtaoamfXgPJxZJk7+76P/yk8f3ZE/C+3B9pXcT7Ock7OqaqccxWaj7MkKTTb56Vn4FzxuKveHueKDCIfB/UhWPNxgCLE/dQg3v+BfJzxDzf23zClY/iE+Bf3ebyFQ6s4H+dPS658nIWWlZOPE98kdIGq4UCvye+ybnnPG5qp93wcamyuhxyTp5ZcOSaHLCsqHydkfFZIilWy1/6loaGtmtesrvd8HKqO0ANWCzmxklj+f5WPE8ymxkYcFbcVh2322XckXPLi6cC35J2SXsnwFKS/QiRPpJ8V1WH7oqWvWCmH58DUuzlprnjDOhEsk5kAv4FR8laKkxbuXusmXGeSffvQj757WZ+PvpOjSaTJX41IoMLCNQ9VMUjlf3jSWT0a9Zw68ASKP53i8Rr4wL+Uk5wWTkLfok+nakUiEsAwJI7UnhtlK8bKEDZW6ny6zEkt2xV/uswqI63b5I51vI+ctNrXJazaLI3TZRnv3zdOv3PHf3Li84FNWpiFa5wum+v5TuS92T9si9vX1tbGDks0Tpedjz4QfNdlsfeewvjZThfdZ2mU5JhrHdpmiX+m35qWd4ZktztcolGS49LgmPvClp/CN/87bkZd37vuGk2kuoVdPbPY8WRAZr9eiiVNpuUCkhkx4GPR6ai7cmGupEG3A5GbPAHJHCctbfLYPn5ad+/NabIHK3Kc4Km5Gjip3eW1PzbEBws32MwauLrG3amAZIGTjiqvPUy2uB46Y2XhOM8z9XYCkiVOmt81+dmC0b8HzhPN71LPUekHSDVxUt26zVt1MOIH5U55cS0w/pcZgFQLJ021iBreMzjOf/PDk42Uvl2vAFJtnDRkCH/Ds8j2fvPm5Ix7lXJ5PiBZ4aSuF4IPTQuOCJveVt5w8OhjIwDJGie12RYff6f9xaDcaqZBq6J/hAJSHZzkdurR4ZaeJ7wyRkUNvbZ82UVAqouTCps4T987/L7fpJ8/N7qaYTEGkOrhpIADAalLixMCch8nN8mqdnc/INngJHmzdrXCruwWZB0tvjqof4MEQKqPk55FHi25d62G4GBTsee/QUd+AaQGOCn24s0abdZkCw83e9Nmyl9dJwFSQ+Lhrz2ND5z6PWTmz515voNP9QUkW0LYom1mHllqJti349Lz073inwGSHU7q0Cfccvhhr7Bd43+sWTEhWwRIjXBSrdi1NhfGDfU/MnH7+fnGbaYAkj1OetW++N+Y14/CVk94uO9MxJwugNQYJ3nLOnxe+TrRd0Jmi91v/905FJCaEFy+i/x7ZW6B90qzca/HFZydCUhNcZLn1doNUt8eCF972nVso5ov/gKkZjhpa7uGr0/cMPHObN5B2vDjefhefJxU5HPSpujUYu+t3YY9r1b/sIJ22NKBx3LYcmndjk2KbF/4TPOyafR2wMVf9HDYMpRNRdWP35+bfeqccPnWJ6PONx6TQ15MFKbKJbI4hgwCtk7Jjvgd6pxPtLuCMkkkkQAlhDeu0DJlgKqgGB+Nvs6JE7QtdwcsAK/OaahfGbzfYlipxFqnjErr0oxK7EEY362dSc29LvZFIbPeX4i16DXihx4TKvXs5OYAgD5bA4Di2PLPCq11ygbo2Bs4TAp07S4OgZW5ZUoxmkIBnk8s4QNJUcsJH3hQfBEMuWIZUXwW2/jSz/2X+ExyqNXmdtfx5KI8NdTfQ98CLSXpvaKyEyoxHHClWxvEfjU9XU/HBriu+ESLK2WXKlGkAvHLcIQPHBB15zX2vdIfT5vK8m+uC1748Z/HDj1PpVJWy/FhGVbLCYq+uZfnigu7LxP3urijwk7bMdUROAcisYdYtEaoQDKC1bv+nr0fs696ZzQpGLV69OfE8qcR6QGsjZxgAVHH7U8Y73+nD/R5+oDqoVfK6QO4bhpS9zRsTclw+iAGiMOFOhVx+uD3yanrU29MD9hr4ti0WSvbcXo0llQNVE5jCZsz+UKE5rBp/8Z1K+X0weq5YudVa8Vhe6Z6Rj+p325VlaZhQFQ+1OFCBciNge6UVN7pgyl3c132PU0Lmrt2Ye1VFyNXGMTpA8i6XzlZN6ZqWFfppw9eNDgtXbLF0Wdm4HGTRWuPX6nC0wd8N1zLMKaP57mjWqbSTh+cmZS9JfSbue+Cux9aeryIdqzi0wcQHFTZsIIDlE3lnT4Y1nd9m35pX7xXppo+rPnTn+QaIFVz+gAi9CsnQmBO435bOI/Fbzu3TBTyvWtD/4nrm5q9ajH6CNkbRdtURvqGaL9w4E3uEot7wiBCjAe/Ar8rTbOVKlC2uLxC3wt33cZq5ThR1y+Zn5vuRRMUHbo5FbY9jXVzYuzSGNFWt2UFrdrJyqZMc7TvIfNel/9Hs1/5G1pTNtnh3Qyb7Ojlsjwlqv7TQ6umsxAgOZMQFsDabm112juzRQEi5MIpTqwA4gvozMb2/IAtEyzGuAkzB54cer/VMXJZ8Bq+xM30aVlKKguwv/rOObW/f6bfhGvNJDdbB5f3QDsELJUTMCBRVeJEYTYDfqY9j+0P/UinOQcvLVFecmhV71k7/szsmCo86JBwbNPu+H/qoodxADPoxZNNBd6RTtFtyucAU1irsJo7+7ndjNA57Z8Pvtor76AeWOvEyVpeFbGWyT/O1K3nY9kti/09at0yee7iPd3KJOBzu37pVdayGLY2RHUSbFksp52ud0enGG4YI3gshtH7esMHKZ13eW0b+IvtrL6HyUV+bWDxTBVc+oTZuAjcH0Z0aHTo7iNLApBjJTzRYeJKh0GDw9L+hnFASLSyiNRtu7IfmMYOxk9pu6gAhH9jQwB6kTdDqXCei5Anb1jes3qCEA1Q4HIDLMoLvQ2ZlO9E9OwD6GGH+OBPmE5TwtVo2UiE5QTONT8n+/bRi/zmNMudKdkTakXWMWj7Y4aukPj1MvMvavdt2NG8u8+Obi7ff1V0aFfelQnYXhLCbOzNUMC6izMKc3mXhFtpsF+9uhUrkyqR2GRUPGDXGObVzeqbk1J7/3LCP/eGT595ooux5KyC0nHp4S+JqG+VUOCCwzaICbZUNxQ2XCX0YlMJ52u3eO/ZSRY69e+3wW7XxgupPcLlElEswg9LlkgYdAGbw+xK3CeF90GZFUtTRBJxHCbkI8WqRL4MhCkK7TUBdZee4zmZeplrkLU1fE5A4TYA6Foybb5FQHQblHfuN4BGDe14qoIdOqGShIgxArDz+K8pCUXXwua/GeV/9olpAdl9Rgeiu8/Y5bKmMzUroZzTGW5bFkDk1jC5DObAZchqwOo+a4mcvRo5BUnUoGgxwrfIb3Xyo4uXAg/ZuIWMPPbmFTlVGxcQ5i0dMlXfsxiiJedEK6BBpTpYxIOaR6XJEU0cWmjk7LgFA5cWkbjBzyjd/AOGQCc3AVFQsoThn/Iq7gaogYSMBUOAoDoNYzVz8jDFMJVnkpQ3kdsdnwXFAga+8jzQWaDTQpgt1rkY+gqorSJEP44Riom+7SzuW/j55B/arUhYMtaYsjEB34phYwK9XBFQyDmhACKOG6rePBZD1eZ7Q9vt/OrCPd7FX5GmCbfIRhiVEbaNODaXtUkoIlImK7CNMCyig+Bifqp2e13UDDHWp6K7BhpEbf0k4AlJbHFVQXNHvYA70MG2vCaphjfcFocAMDcb/3ph2Nz1nkGHqz+/0v1SdC1qPKSkCxV2tSwbRPWxymmDYOJ4HIQqS8DgGxU5o1DpFCvaUGefWMoPYcQoNc5s0PjCOf7bfSYdbZTm+rxK97d4rjgQ5kxOIjwUCoDA514k29xTvb/b3+HQL0ETJ/Yx/jrq5XbyihQqyFCJ0g8uwNGsoEThXY40k1R5LEC36o2AF0PgrjixjB2Lt3RUyJJ0mp3UJE2W56avpKlJOmSQf24EUM5kWlKFyQipjRgaPUOIYBoqQ08p+FfXxqTy/d3chFMO+k2SNK7zTGR5iaAT+bEz7i06j4j2+iwX9Kt2aOC7zvruSaUfFfNP4OU4u6IOXocvmW36a3fKZUNVMZmA58WN8PPrjCtjZxsxdYNmW1i0gPIGtAqYIoy4NKgz5OoSZIX3ApfC/APVw29TfBt4H4Nvg14uC5lq9YIskbHzfHYECW7ku3eYrQdkcjiRAbPBAM6w8dRTD2VQWdvpdrBLEcYgGHigi1lD0TdnLsLpf3fsrVHm/ovntF3SfJSDKVmO4Vh0OUav6tsEQHZEcLLDqWrYQS9To0PftprodBGp+KPFrccyMuBGtaZrexXLQrfkDTP5lvHGyyw0WQX72Km/jswRRktgJNY7O+RuuN4o8GJYyYXrvGB24BY5isdikXcMCXk+aPKOoBl1hrSf0uBAAtnHiESAAdVhvcZevcGpRO+ETg6+9KidoaUeeWB6HLrLg13XtroFiJPz7GAQwWRic4CJ9bDTqbpFI6ylNvae0JtD983RR2J8x7yeDx6ITjmE74lp+FMD8b4Z5dm/LG9ABdelIRYqphmdCmZ0ul1VK1i2kqllZZW1jFQhcr5SPApB18MQUWwiX5mMOhZwlRb7AmaFe7JjR7usBv7r2w8MfzxlJmWvBg5LV7jo1YpgTzQnezwMlj1lbX82LQ2D8CN5Zc+cOoN2+rZYszog483l7aeemPzEsSNaPdrVszwrFRTHhhqKldOxgYw152TsI9uqZiy8CbWP5Vx2qxNJNQWMvKW6jrpofr1PvBg3XC9+ZtokjXZHJx5uWvvwWEyrwbQ6pC7L66c9fAV0OrxQH6+OwNjpcGt9AvK+Bg859RCmfiCnOqJ6gHyMPRfkg+wJyPuxQa7z8d/aao1V8cd/GU7rEmscDKd1ieUNhtO61Xmsp3XVx3/pp3WJ478Mp3WJ479UQaEdoITallHEqId59XCAMpqNyc2DT7o+2GHht8E4bujNl9ZkJtfDUkd9JDIl3HxE04HpIYMpy5Rq7ieGrZwTYe9jbAA0QQFmLeCHWrSLHKgHmMt8RBo4TB/SdpUY2POt9cBMus0UU1iDmeRST6dMSHssdxutLSKDrAF4gF/YT5n97j3+qsPCGV7TFotizhy/sL48mdsVmxQpB1j9Wg/fxCmmap0YWHm4HuOuLhtW9dUHbDSxYkTpTo3cKb/fby6cEjL6WdK7HTyKh1ieQzYT+oR9PLs+1W+TbEbAdO+043pAyYUTpeK6uu07uEQQ8wqdbChmxJSDiQPESUb2xNup3w78JEJ+Fy5zSDpjvVJ1pzwyVt5aSi64EDGmd0P3bUw93TZFndWL6hCiWI0KqNDMkHQT8zFdwatTl5dvDZgiOnbVamzxPAPIgYcgRXGC5FJPt1MCrXzF2JurE59KRQZNU2dXUJY/zhy+kXI5cOkS/z+u8deS+zeYE+PSc9LVlIpAx5gTnft1Ce+nP4/FML7uGxZi7P6vz6K1F/xWhwcOoKd10i2hMQu4DuTTAeqDkyNlOjUhoJbr0DbTVNs0E6CYimwAbBe8GdKZ4PJZpk0FJP2ntetXzzRtl/fBDOPd15znHifvj6OrYyxmnUQsS4tTVVx56woAsB5BsCKYZMwL+N/5NjrZutooWAiYaexQfbc7f31hwzyvxc/rhS7rKfElayIhuJcZKA1SJbsEEKZMTpgSbXQzdmUnZFNPLlRZQjbUNKiMwIRsPs13dEehwfXQADY95NP6gnvXSb+H5PitfqfqateEmtWYJJLzsQU3htV8Nte8NXYfkTuMVjkR8aXISHgJUYhjcQOplVqilgrieEKmvEsNsg6nOm1bn4YHsFlOJ2U56qSoaqNJzViqIHgcxrcc1Tb3zNXT2wJz1rU+v2RDZw+yi4QOQHeRsMtlzTlq1aTyJrYAeKwhPNlMcy4fOJhFjjqdTaqFPQ9X2fixy6buuHJ+keBguvD0pejq/SlrfOj9DGt82PWy8Lm+8dw4ZMkMv8NNXnaa/lQq0QM+BY5c+ADxqYolWnN00TsFA6I7j/pHt75ytaJEigRExcW0jivssnv2Whu6r2GdNSOFBymHjLD76UzDr+tbWUKuyDm5EmBQXCk+SnBFJ/NlhSo8ORLHtU3lfKnHvT3/Lg+YbRux0n5y0HIyY0LR++mMwa9XxLEiVJ3AtURavPoIWLHrjroFZPZqDNDAQiIuC4+zJ5oNCH832neibQ25/Hn1FPIZbR9sAPoZbYJQEYhkOXIhMsiRsOsDeSx2PW9+8IeBP3ULnPrhu8r8xN33ZB5j36h9nmp3dYRBNuD8kYni2ETgVsJKVSKlEtbHVJ+x0mn/nlr1j+l56TKJXdfl1HEr/NQxLXn1EYjqslqVN3m1Me5qQGMvxkoew+1Jb/YknfAVfpZT/irxzenvfuHw5plkw2/G5tioCZVs/NGDyRBDD6ZkzgJnFEOdNFb3MFyisCYvpLI/8HSZElsfgI0lEHWyBLrnOzqMOeuGas+rtMcMjGtRwGyZAIOVvQFg+GQexDaZDWZ3iipN2uxOGfHLFFLqXoYetqdsWnFtT31oSWA+mA3zsH1+l87xTvqkD7D7SfwqqA65BnkoLCQvl4hj0SJDdEXKhrR9KPAHgHlSgTsl/CTSKFrpSWqdU67HopdGJ9O1XbiBuerOAM4MpoUbuEdxvw1DajFhTxhSi+E36ZpaTKXrK3WYK3BrgiVoYanfMgWFX4z8eZo1+Frkx4LAKSsDhw5/Pt6ZxB8jAX12CGizw4gyO7rUjO5+wqNb4KZuw+YnPHdUlXfNBLDTBbLTQ8DgCX8GVGNnpqxhNpCaRiKxMqChdUGpv9PMI18+JftuDvjyPmfL0qtklLzpKHmXidLL4qIDH5xXeC0csKmR+feTA/SAEhBrDpR2tzlNzRblPDuFdZ+AjpEWAFFrKJBtGDYU3Ybh1ytiwRuVmM9MC01nXVGkcH36y3+ZPqUWh64kfTrdiUufejj9T5/i/Klrfnz/zCYzwtZ86tV9xc2EIj3oU2rRbz1oinQnLk0R7VTR+nR1yPpJdtdfC1Y9y1qcf7T/cj3oU+oigR5Q8uBEydypAvUp1YZWuT5FJYZVnwKkcH06hE2fGkxMQJ1O+slY62hk9262j9x370evxLzrs3vrISSY3JorJIhrTUAewwa5zhlrtQjIKyFjjaGjAqHqGToqEBlrDB0ViIw1ho4KRMYaQ0cFImONKg20tDQ4pxnliNpwQQ9paSK9cdKyEjn5n7UeYejDQXCSurFP44kxG0+onS70wJOhbDxZXPRxhWufjJD9v4Uf8y/JIZertyhN1CczhmtjqUFplWspLCOOD2BBT/qv4xfeO1QQ5dR8tEe33mObu4S30cp5pHb7MA2RxQ5H4tQ3sb0CvUhtKU3bU9WthbyaTYBC6+TDsph5vTGDE2mMw8XgRKJ+CcWJzPqefmD1vOjAvRs2hXk9a3tP3+d1GQ1PKRb8FJFCDA/MMaL/cvfftYZlmQXm/3x6pLXdvtvc6PfFh+KH072h8DK9IWoblnKaIz7gnnET3BuiF05qjXJPl7OINqXeUKmgM1fx6TnHz6tax9Cde7qdadX9JzdO1Ng8I6Y1vXI6RY88cUjgoUR6mYB2KCS4Doll0yHZ+Y/6T3v6OfBA/p4DO4Y/JpeXM4kQSREJvS8Ym/pwEvDl8A6N5oZ8qUyFYDXtVUiqCj+AxIgztd0Pw6No4xZZRsYqZBJJb+jawouap6YoMkrlLJuMmvdRIooo8PjE17bylSXDmRErgQ3IYL35OLEKf3cQisDt0Cfp6yl8JDrE0U5JOoKAxwHwsasPL32aj0WoSJEgloYg8SShsMQu94atojWv18CuR8nkmlcpncf+dhQ2i3I4bYWCGKGA5epUYuypzIinYjLKCtHIQGkc7PaglvYa8CLco9W4hAb1ErybHab8YQNqsUjiA1sQqFljGqlSIKIk9e/o2elSBYKJahybqBqM/05tPqWnNX2q/OvBgX/kwOXAFzgQ6gExeMyp5sRw91EiGnNh7qFWyfFsmBu0q83Qro1wtRnatRGuNkO7NsLVpjJWe1eb2s1ND652AhtPakQuSVmfPMw3981npDN/09/k/ij4Xj/RC1X7tjKNiCwBKT9cjkj9Q9TdWrXLAaB2reN8LHrbFsoHtD3VD5yts65wgxY40oW01Vg3Ie+zi06n+ptgQkq0L8IbqPJjE0VSYK4YXzyy7anpx5+2Dc1Oqd96z77J5NDHzBcbgZ4DQBAqogN4gStXB/As1yrJlTKJBdCqp39RUVGJLuf6+WTGEK1p0dQCCXREmKOMN7uGzstt5L+ky7whR4p37qB04cIHYejCRVAqgjtyTu4EGAJ3gDYq0SWhsJkQ7SoMzxaR2MTZql1+NernZt9cBNmm2SL3pt8vkJkjxPsU05mjplQEc/iczAHapOqZA/mjyRxiYY6NOZ0FSfArUZ5oNG/Guvb04MvkohGwyY8n+lvpJ5hn1P73c15OVr72yR82wvbTwgvkYwY1ozTGpxdCJVErgnmFLlzM21g1zNOiE5NxGRzsUcpB2Kk7TQrcWcA+wC6pTApZB36SyEaiRPirByQliVKxC4x8PNanvePD80t9ttttP5QQOIu8iW8Smch0EgK/XBGcS+fkXHSVcw7eBKNBnbLj6mILMGJpArci7LnX7kWjM6N8Dm0osGnZcRu5tcl/1PC+vHtcbrgPAWOHszS3ygNVhLifmshj8VPtjEdHHj/4Ifyoee4zx06jXcib8z7YkkyEAkkRIyPppR/ZkllbC2DZeqXGsg7agSwBkSUhKkUaX44NqLQKxBI4A6W9ESkeibA7r9S+ylzPSk8kINNr9wX/yGUKlZ9YosK+mMndZ811B/L+1A2WHmVKMPAAnMlwY010ZYxr/Qls0LPS6DNq5dHHf1zU3f3Ov4FrhekWp82nfyKLJTEqXSzVlLIiXmp3jPJGvDDrByLnxaRHikE8vNtNp7Mt9aM0XBi+LAVRKMQsTY/HvNvnPd9uROjkFcn3YhY3e1H+KUzBiqoj9IBVBidWcW6VqnOJFUkzPOSCH4LOzoOcByXmCO7xERe9PbxLTFDbRrWq5kRgQHwU/r+mpttDvkMdbovZ1Nj/urj+R11cqe3oK6WLKx/2KPU4DYt6MBz+i3AV8k66V0QX1711lI27bZ4WPDOhVfPrU+p667HAhJ51pBdAqDtEaCbTvIdNL208KqWLa40FGb6rNj4M2sybeP1uSoJblVa5hqj86c6FCpAbg4kddDvrp78urn99a3LYrukfobOu9XBdZHnujEF0cYWsW87JOlXVsK7Su7g2vC+uqzy823/O0B9Nm1zreYuyZ1mZdVrgwiuqZRiLbOS4o1qm0rq4+tvXzr53rJf/Vsm4/ddr/0vWzpXfxRWCgyobVnCAsqm8Lq5GtR+U2MgCgzOa56ZeaDpwjwFUsIEILedECMxp3G8bxmPx24QC57YlPa4LNj5suunqyrftyaVD0HO7cpkEWHS6z2bOgnPH0i0Scen9ePkbgLhClpyQyIdVkNGlGl3Kt8y/i/x7ZW6B90qzca/HFZydyfq09EInGkQt8c1rJeQVeQJ8RT5w0YWCbzoI7708y3uW0qb0sWAuEIYF46vXvHIxeJjvYb+8watFF5cvakgOnfr+P/a+A6yJrHs/7iKiKFYQG8aOSLNXFBJCDUVQxLJqDBGigcQQBMSCCCpWVOyo2BsqNlQsuK5iL7urrr2tupZVse2ya/vfO5kJmZk7Q/IlkHy//+fzuCtzmMnkPfeee+657zkH0gNQjfnKJOW5UFTDaKALdQWg9wCi15yPGJ1nwIpzsKNeLlRN9fSNkkQrJWj/8sany0s//isL2jV/596ZOb3jKEmR2I2IpEj1daMHh8D3z2L9/jEdTe0saUamHo4SfGWpPEoqZilnlbJn+TTHP2oFLU1/f21M4TMJeawSD6CPVY2kIpThyaoMe9Mog16cX48TC9fAOLkKLF8iMYydOrp7gC0r2FnEOnM7eohj5MooZ24nj/hxShX2A9pbXbFr25XVbs9DNnc+eahNdIft5HUNfkC4KllGnzZaoopQVok7m7LOuJvDzIGP0stbtS0LdMclKEfFs8ygW5zlljZPqwQfe1XkXFDqOMuQrbKhW4eOuCGH2d1XqOpQdBJs39ZRPy8Vt+Qs3tYZ4WGZXe91vps2VU25GReeYtptLwAgiQDgBgIAaFr08kSJpYy5rszO270b/nLLzTf7yw9BKyaq2lGWssrN74cA1GQDIOKaO+FojuX8d/FxOv5iY5f0pjBkfbHLpMY1/3hdaXycx53Z+DgNOlc0H+fvp6OGf3rWL/hA7fFVhMfm9TcDPs6dzmynm/s6mwGp4PLly5XAx8n6bd/yoT5i/02hg7s2uHAhxCz4OHNYtRNlDtqpFD5O678XD4rLqeK5KNfttE+t0bvNgo/Th1U5DcxBORxT8nHqyvf3j65u47f1rF+MxYW+P5gVH+fPTmzKO9nJ1M6uGfFx7i8O6+BQdMRn/o49fRdPuNrdxHycHFbNqUyuuQrl42R2jzqc1OeRcIu1W/T06ZlbzYKPg/kQjHwcYAhxP1XG+T/Ax8nr1PDlT9eq8rJadolr+PF8hIn5OH92YePjZHepHD5O/e1W1yLvBQWu9Piz4Zb7rRcYnY9D3ZsbgWPyuAsbx+RIl4ri47gvz/gtcv4y7zV7Vqwausf+ndH5OFQbYQSsslmxknX5/4qPE8tkxsYVSTtIg7fxDxwLkf3xeOgb8klJ/wSYBemrFCli6LmiehxftPaWxitgHpjmNCfZBW9YJ4JlMqPhJyBH3jP+yQbPTi3h5fUa8/Q726NKxvejn+RoC2njr3o4MGEh2klViFH5H2Y6a55GzVMHnoCsNRiVdnz4l5LJWcNR0DymdXGtcIkM5u1FkdpzY2pVqzKOSZV6Z5c5asZ2xWeX2WU5/Nzm4xNh2q22oc6lae+0ssuazw8e0d6tVsDW+l1qv9rS5qtWdtn1b1/eenbaI9isrCJeGZ51TCu7LD5CdKlutZOBh/uHjFr9LHGCVkmOvdf95EMKuwStHnMzmt8jWKRVkuP+prm+pc6vQqbd9+Umr3n4p1YTqfEc+YG/bIYI983+zr7qubV7gagaLuq1+GybJ1ume+54YrnVNik7EIiscFF2SN+bMb8+91l86MpBcciJuUBUHRddrb9UsGaYtyDn0PBa/cf9/AKIauCioCOL3o25FxK86S/l3Q3nQ1sAkTUu8qvxTSlyFwnmrld26Dn23VogqomLatT7IftT/sjAfSe8007G3twMRLVwUfqk25PH9s/mbd1jdzIl/dFVILIh3lA81zKy7gHv9bK6Nd/8m1oLiGrjIqeZg4dFt9oTuCHp1Dy/NZ1SgKgOLsocrLobGL8wZPYThzCbM64Qw7q46PbKXuNGbxsSuLHhMJcZK2ssA6J6uOjEmTGH2x4c7L8pPonbU3YTark+LhqU2LXVZ2FTv1RbX4t5vnVaAVED4q6Ch+Frv0T4rL07YOiWX1QQeVtcdNd1ZLXryznei9b3nvWpzeJ0ILLDRfPnL73X8e9GgTtt3DNlz8YmAlFDXHSgNHPWozN9fNcWDghKG7p9BhDZ46KfO2Q2VzY+wS989EIYfP5MFhA1wkUpHqkNT0l68I6EtD+7If5uPyBqjIumvwh17DbmvfesXLfeOxq+vgNETXDRRW952K2vhT5L6jTZlHvIpw0QNcVFuyLW5fwy60/PnMktBjxbchEOtmbEiLKUzX90J94z3a7/5x5fnZKAyAEXrXu2yqNreiv/HfX+5qVMTlcAUXNc9HTtzZgkwT/BB5zEHgvWpU0EIi4uqtVz60TnO9cEhcl20ceGP39DS7ZswWFIttw2a+WrOy2SgtN+WD7//sPs+0ZItpQzmSjb0Yd2rTh1VpCT92jC+aYTc8nBREGSQiaPQjAImDolt8Xv0HA+se4K8bEimQwYIbxxhY6UAaqBQr4aPc6JC3QtdwezaroXQ/uK8H5LnAWcpO769X0pY1SqXwT53Sw9nhe6rnbmr7+0o1MLh8PGJFQa2cnNBQCdgQBFMfHPcrvrxQboGgYcJiUWu4uSwMrc8ngpRqEA7yeVccFI0YwTLvCguCK45RIjUXQclD/k3k/3eQeXxDRLafv9B/IRqOZz6EegZSKjV1R2xEYMC1yh3c3ivJpO19OzAa4LPtGiytSlihGpwP5lrIQLHBBN5zXms9KJdhefZbzvE5Q/vXX9p0O9G1Ci5fhjEdFyQmJs7eW74IPdG6W9Hm7YYKedmOoJXAuC2EMErSVUIJFgbf1aOmRn5Dnh7D0XBGcPtso3nEZkBLCSWMECQx1ffxQchvXnf9kH/1H2AdVDr5TsAxg3bdqzGLamRGQfjATDIadHRWQfuCTbPuapFvgfvNaunuMHH38jLpZUC2TgYgmbMzWACM1jsv5/9qiU7AP7hT69jjRN9zyUFvnaP/tLqElpGBCVkz3YUAHjxkxPSiov+2DqQ6dPuzoc4BUom7Vd2GxQP7PIPoCqU7GqTmga1VV69kFUYJ57jdRf/Wcon+a3fxE11YTZB1xX3Mog6eP5bpiVqbTsg18HTwhY8a9DQG7x/j9Odml11MTZBxAczNgwgpPToxKzD1wja3SOujzXd+vcIXs+uZSQ25mbJvsAIqRiRQjMadxvG8dh8NvOrhQJv/Rs6Ju2yaHai1Ypx8jeKNamMtxbqHvggEfuEot7wmCHOBr8CPyuZO1WqsDY4uMV+l646zZJJ8eJGr9EvzfdiyYkenRzyg3DuzkhuzRywyqgnezmdRmnPmc9C05P7XFzXuGlN5RDdng34pAdu1yep0S1f0Zo1bQMAqRADcLjHQQcRZheZ2f2GEDEuHCMkiph0rM8Dr3YDhjer+RA5y4B85v+3erv5KYryNPSm7iZPi3LROUBtvtS6YSJi1r5zLz3YuaHomaNjACYHytgYESZxIlSrxnwdzpzmP7QUzqtWHRpjemSxaoKr0wc89bpdsjy11fOTcn9/Xk9LBkHKINePNnSixfuGNneMAeYotr1t4syV504EpT2Z57dpG8DdhtBtaX92VR7pb/5+MdZ+vV8LL9l8fOs73x32L73ObR9cO+Xz5U2JmtZjLU2hFMMtixW0LLr3bAphi+MSg7Dwsi72vDu+O57PXcMHW4/O+IouchvA1g8UwVDn5CNK4HnwxI9Gh268eWxAHJ1CU/sMVFlj8E2h2X9DaPAINFpRaQe25X/wjR1IH9L16ACGPxJfQHoz3iIUuEcZwHHs6+huXpeQi1QYLgBFuWF3oY8jutI9OwD6KmT+OC/1DYtHkaj5YkShgych5Mz1o/tdlBQmFpzzLmf59wg2xis/TGiKyR+vTwb07r2xw4jPnfnbbg51+HIgfX2hkYmAMwKCLMFD1HAuocTBrOhIeE2WurXRLfE8rh4iTgBGx6waww6urmtf3bd47/X9s20yJ038DmH3F/Buuy59O0vSWhsk3DcGYdtGAq2JFcMNtwkxDOZhPM2rd537CYPmv7uTaDrr1ME1B7hCplILOEGJ8hkCFvA5DC7EPfFwfvgmJXGjRfJpFHqQZ4oVcVw5WCbotTdElBP6VneE9XLXEus68LnCAyuB0DXGnX4FgrR9TB07tvBRQ3reKqCHTqhkYSIMbR5vRja9U51r4zmwaO6rw5+RXafsQfR3Wf15fKmM5WVYOB0hseWWRC5dSiXwQq4DDEejO6zjsg10SCnJA01OLSQ8KX95lJjZtgvwdvuNhqU2LDzIjJVGx8g6CMdstTYsxii5cmKlr1HpTpYxItaDUhWSLRxaKXF2XENBC6tROYKfyfe1ddvBHRyoyVKCksY/jHUcNthCyRULHgE2FQnq1WNzqKgLEyGTBJDidxu+Cwo8ULoleOOzQK9AmH26s7F0FfA1ipi6EchobCqtST+a/Bz4WHJ3tDbDZ4/pBxMwG+FOJjALlcEFJ6sUIAhji9UKg7DQtX+S0P7ndzvBft5JZ8kDtHkCivW2BhhOohjclmbBUlE8QlK9UGYekcHwVX7qbqddVEZYoxvRXcNtIS6+knAE+rTDzcVNHfUE7gDFv0MXZKq8+CxOAQA+X2dnj3O627T3+/Ih5cnDz8/OYe6H4qnDyr11fLWIKqPZeAaBInjXSBUy7wQvtEzJwwqvfaKDaizTxrHFaIbL0qXdhCv+tF7mlWB5c8ZtXxNer7FccGBsEI5iTApFACBz70Eprmnen9rcIsjwwPS0gZafJrwfCc5IoUNZGhE6YkL8Gm14YjCuxxpk1Q5DEC3CZOALyaBp+JEGFuMt3RUymP1mp1UkibDe9MjaRqRHgzyM14A5SxUSBWSEfy8ED2lIESQhoroKQX/6tuYVHGol6sg47DPNFnTuk9E1pcIOcGPzby9+LxEVMDP8Rr03ZGhb7sbuyeVcUzMloPB8lFdqvG2/dv2xHGXJU/N1cRkAZ0f98Lz15GRsWVeqO6lTIHFGnC8AasCpggSl59vrRHnzZ7ju6bGmpT96x1aUXwbeB/Ct8Eul4fM89LT2+t0i+Gl9R+3acPrHrlGQEbBigyYDWaQw8bRTD1MQeUdpzeCXYrUCoIbDyyYNQr75ugsmCrXLN/FXAhe1PJAtyfPlpOjvFjHI/o4xq4aewmA6uCyqqPU0yzOyTn69G2riU0XkYqbIm03Ce0Bt0jZ2SbqO//5g/uPclp0P7VaUIIK9rHTfBxZI8iVoIrU6OpQuOJ247gnIpIL47xgduAr8ngOw4q8e4Tw6bD03QGZdUd0zrArJLeXtAyXgAVUj3hNE80BZzx2J3Ry8NCjbgstNeUB9Tp0l0d9XdfqFrBQvSfcRKCW2FywxHI89apu0VjdUlv9PaE3h52bY6+EpkV3tX489ssp/s5xI3NGTHv11JDzS0M3VDAuDbFQoWZ0Emw+ZZoZrUPJ1PJYZa3DVRIFN146QYLFwyQicQw3PgFzLGCUVv0BSAX9ObfFZtv8EyF7x0lCMi5fI6cLWMDH0g0udrUi1OPIqh6O2aqnvONPh7JtEJ6SV/7MsW63s5e4w3Hh7KJ7R/eXdjnBciL6faRLR0MiFRTHhroVM9CxgYq90Y9Nsfn9TK1YeBO2PhoYdqsbTl0K0AekFNdRH8tv9Ik30hW3i6WoQ9JIN2zi4UtrIodhaTWbVofUsLxx2sNXQKfDnD5snQ4n9iEgTzJ7yKlJmMaBnOqIGgFyIY8NcmceAXkyE+R6p//aaCxWxaf/IrJ1iRgHIluXCG8gsnW/5zBm6xLpv4hsXSL9F5GtS6T/UgcKLYESWlvkEKMm8xohgXICk5JbBp50ubu7hs9mi6hR15/XISu5vpo6ypfJ4+HhI0YHpm8ZLBmmVEsfKWzlHAN7H6sfgBEUIGsBT2rRbedATWAu9xVp4KB+SdcoMVjPJ/YCM+kGak9RB8ykzz31YkI2UXO3sdoicqgagAf4gTnLrJEyYtvsYfGee56dnGw31K2PIcztiiVFKgBWql74IU4J1eqMdBJwevRCnuoyYWWrSbDRxgrtQF7+FGoREclfVFBv/uqqK5oaMclm6sDgj2c2JflslWf6zeQlnzACSp97sqF0vKd+5w7OocS8wiYbhhkx5SBxgMhkZCHefu4y/mvaMf8C785pM7jSkybMDrjijA8iJL0bum/CXvodijppguoQIrFWBVS4zJBsExKc+ZN7tVnxcoPXQmmDltwm9UeYAQcegtSaFaTPPfXLEmjjLVV/cw3xqWzIYDR1ZgOV2PhpxErrO8KZ4sif5/24/BKZk048l85J10gqAp2rjAkmEJ28noT3k8JhWBhfRgQLLdz+4S9ef8FnbYj/EDqtk74SWjCA24KcHaBJnEyU69WEgFquQ1emqa40E2CYDvYGsF3gIehMMHw2sncFkP4v9cwIOeY6KHjptSf1elu0oTSCwKJjDMs6SVieFaeaOEPrCgCw8iFYoagx5gn875m99VrrbDCwJGCmMUPlWX1x7BC/08INwsvjC13XDSRbIgG4Fw2UlqiSXQII00hWmHr01m+xK5+QTc1cMBkhG1oabIxAQjaX5ju6YdDgdmgikx3it7vg1nPafWGuz9q3qp6NmlFZjbEiBVcdcENE85lc83bq+wjuMFblRMSNkyTCSxKlVIwvkDqZJWqpIJY3RPEutcR6ZHU+CyqGCdgM2UkxQXoZKhuM1KymCoLXQRed9LDNtvjSiz+jbvQ+v75Dyd+yKvYAuoukvlzenKNWTTKU2ALgeQDhWYGacwdhA5QgvXKTaqnfh61svFPEt7w/njt4ZV8ZO7DNwHWrKDE+7H5EjE99vTx86jduaOXx+KJwY+HnobVn9HU3Aj5ZrPiA4WOKEK0VFvQerwaiD4f6R7++crUGiJTREhWb0mSep3b0uvHN86DF+y9bLNtTav2r76crDb9ubGMJteLJqhV7s9JKSRGhFb2Wr9qYwVNIotiOqVSLbYsmNJjlf/Tzw7XXc0c1ISsmCLufrhj8ekWkFWHmBMYSafvVB2AV2xCk34asiQYDbGMhk5aHh03M6EvjllzwyuOITr0SzE8m52jz1Q+g52gTgopAJIYVEecgYl2fxGFY1/MXBn4Y2ruX//QPX1RWP916T9ax+hN156n20ewwyAs4NzFGKo4BbiWsVCWKj4f1MTU5Vnqd31Or/qHelz4m1df1yToW4lnHNPLqA7CrixEaSl5tirsacLGXqksew+NJHjNJZ7LvpNQAf3/fzY0e3hp6256cFlCNybHRCCp58ccSkyGG7igy53EnDEO9LFafYHxEqZu8kMr+wOyyeHV8ADaWkGjIEtiZb0owmnVDXc9N2mMG7msxwOxRgMHK3gAwfDJPZprMZnM6RR1NupxOVeGWO0ipZxlGOJ56HMh2PHUykMB8ChPmwQd8Lp3lnOSnDmnUW/oioC65BnkQLCSvkEnFWJEhuiFlQrpJEPAHwPKkAnfKuLGkp+hkJ6l1Ttlei14anSzXNXADueowAXsOKnADzyjyQhHUYmI9QVCL4SfpSy2myo1FHWbbuDVTE7TU1G+5kqIvpH6Onmp58af3YT6blAvX2NunkBOcq3jRZ4cXbXZUocyObgV2/bMCegbNatpyut/xbhMNjZkAdX4OhSbcC+EJlwLp1VAUa5gJJIdwiVgOLLQ+KLnv2JBr3cuOl3csI7D35W19ySjx6CjxykXp5UDlpg2jXXg7rwRGXcz+RWEElPJYUUoPLaayRVlzp9TdJ6BjpANA1BoK5DVM/Sj6GoZfr4iANzZiSlGBpjMuGFK4PU39L7On1OLQlWVPQ1jtafD/7Cmun44Hqj8v7HTRa9uKwesybzRtYQR7Si36bQx7GsxqT4Mr2p4uq/84ffuehX4HlI0sx2yp0t4I9pQaJDCGPWVFKT24Au0pdQ01vT0NZrWnwYQ9ncpkT81mT0CdTsZhrHWt0ujtXL7Cu+CjZ0z+1blhRtgSDAhm2xJ00UCexgS53oy1WgTklcBYQ3RUIEw9oqMCwVhDdFQgGGuIjgoEYw3RUYFgrFFHA42WBuc0chxRGy4YgZY2zWiatK5ETf5nrUcQfTgITVIP9mk6sWDSCbXThRF0ks6kkyXPPq5yGThHeOhcyI++33Jbkiu8lhH1yYphO1iyK6tyHQfLiOMPqEEn/df1CQkL8hrg2DLFvVfYpJbOIe11ch6p3T4shXLxWEmU5iamr0AvUlsm0zWrup2Ac4cPDFo3PkMwcwMf4URa4HAhnEjML6E4kcu+pBauXRDpX7B5a7Dnkw63jZ2vi1x4yrDgjhcppTBhDol+ixq/t+uTPsdzjsu9DmGpO0Xs6Efgj+KG0L2hkHK9IWobFgOXIy7Q3lU+7g3RCye1w7SnTy5igzJvqGygo6v4JA7fPXniJt78FZFVqjz/3osVNSbPCBXTM9ApetARhwQmJdLLBHTCIMFtSAaTDVlx8MHgGY9L/QsP7i/cPfYhOfpSNVQUJ5HR+4IxmQ9HL64C3qHV3JAbJ1dJ1DXtVZIkFZ6AhKb1Udr9IF5FF7fIOlyslMtkYdC1hRe1s6YoY5SqWaYxajUwXqIcAF6f+Ng23vIEODPEMtiADNabj5Kq8O8OtiLwOPRR6iaKHokOcbQsybYCDtcP6LEnn5M6g18jSKSMlsYJJaNJg8JafTkMtorWvl5dfX2AXKF9ldJ57F1bQfOmfsW1MRBDlbBcnUqqfqtqxFuhFmWlKNE/Lgp2e9CM9urwIjyj1bqEbepleDc7tfGHDailIhkftiDQqMYyXKWUiGI1P2O502UGRD1UpzMNVbPx36nNp4wU06eOfyM48Pl+bA58lh9hHmaYPebU5cR8z1G4fDbMORqTPJMJc7N2tRHt2ghXG9GujXC1Ee3aCFebqljdXW1qNzcjuNqZTDqpHr50/KaEMd67XpVKunO3krfstfGzfqIXqu5tZRoTLIE4bohCEucr1HRr1Y0DQO1ax/pa9LYtlF/QNasfOFvLBsADWuBIX6FFY10FnDPhemX1N1MPUqJ9Ed5AlSuOEcWB5Qr5xd+vsvnQ/ey+kDldhn3aljZkHZkD4K1+Ap0DQAgqogN41gC2DuAxA0zClaoqBtBqpv+DBw++6ZPXzyUrhmhNi1ELZNARQepmZXbQDyfnL/PK8X2ZUPgk6ROlCxf+EEQXLkJSEdrxZNWOvTloB1ijb/oQCpsLsK7CMLeIpCbWVu2H/q2f+mb0zqB9NV9c79+3PZmxbiXA+xTTlaORVIRySsLZlAOsiemVA/WjrRwiMMeknO5esfAjMZ1oNW9Wd+3x4MoVonGwyU9H7Key30DPqGt9Bcf3HfjOa0XG3G+7ov32kQuhDtB6Pr0QKklaEcrLZVVekmmUp0MnJotyNOhRpkHYqTs5DrizQH1AXXHyOKg68C+ZPBETwh/doShWlKS+gNTj52Oxl1tenR60eU9ox9xLo9Mo5WhiUJkQ+OWK0Fwoq+YcTa45eBOMj+nFjqunDsBI46LZDeGuH1ou//HiX/57Rzb7Y//7fAvDG94besblivsQcO9whuZWuWOGEPdTZ3EY/NRGFinhJw5/CCmy2vWkbbcUZ/LhPF8dkglVSsZLJYn00o9MZNZ2XrBsfbxWWAfrQBYtkcdKVMpkrkL9wPja/moCp39cmCQO34kwO6/Uvsps70onEpDlNhHgPwq5UuUjlanUH4xy9xm57mC87xsIS4+iCAbuQDPDBjISXZH7Wl8CGyxXGntHnTz6jovPhclrhggK0w/2mnc17hZ5WBJPpQ9LjaTcuoGU7hiG7njhKTVEzhNlR0rAfjh9oF65LbYDtFwYrny8RKmUMjQ9HrKyoFb/TfVDZlg5D7fduG6T4VOYghXVRhgBq2GsWHUZWKk2l4hIVsO3XPCXoLNzN/fuNysJ7vERF3nuvG9VsbWNuqpaERsD4lfh/2tquz3kOzTb7dlMZux/XVz/oy6u1Hb0ldLFlQt7lA4qhkU9EMl/oS4CTnZERXRxLV7Q/j7PMtbnwJ9jS9cOmP/aiAUmjGwjPQFCNSFCs1DzHja9fBxRKV1cIzKdztptrOeX2T+qRr3ZfWqbtMo1ROVIBBsqYNyYzd5Bv1w/43VxrWc9d0t//wBBXuy2RmM3xJAD8Kbq4gpVJ2NVnbdpVFfpXVw7D2gqiB4aGpRWffWHekdH8U1YpwUGXjErgyyykeuGWZlK6+K6YIWwycTHK/wKh1j+s6TuVXIhvMrv4grBwYwNIzjZEZXYxbXB9Jb/1Bm4Mnhu6M8fOyufkStomaaCDURIxooQmNO43zaHw+C3CbycOnzzuOq15Z7D1l9Wv6GUDsHydhVyGVjR6T6bFQPOXcuOSKRl9+PlbwDiSnlCdAwXVkHGQjX6lG/pZSmb/+hOvGe6Xf/PPb46JTG+Lb3QiZZQR3zz2wg4ByMBviI+DLpQ8E0F2/s6kYbmUjYoey3IBVJjgfzq/6xfU7+2tLf/4ucxh69eGUgm8VtFQHoAqjFfmaQ8F4pqGA10oa4A9PIhes35iNF5Bqw4MyP1cqFqqqdvlCRaKUH7l2fTep14e+MJf91M22O31pdQWoJ4YzcikiLV140eHALffyTr9+8RaWpnSTMy9XCU4CtL5VFSMUs5q75b/KdlBocHZDdQBaVuz55NHqvEA+hjVSOpCGXUYVXGs0Fm4f5w9DmxcA2Mk6vA8iUSw9ipo7sH2LKCnUWsM7ejhzhGroxy5nbyiB+nVGE/oL3V8GnXbhSfbSVYMPiP5yU3z8rJ6xr8gHBVsow+bbREFaGs44PYlLXMNMqizBz4KL28VduyQHdcgnJUPMsMSrtrbes2KoSffjh3Uei7bm0M2SobunXoiBtymN19haoORSfB9gmR+nmpuCVn8bZO2GVGWVV/5HVgTkZBb7/SDNNuewEAfgQANxAAQNOilydKLGXMdWW8ix7XmX44xHv23ptD9jTr39ik+f0QgDuDWACI2DiIcDTncv67+Djrnq3y6Jreyn9Hvb95KZPTFZXGx9k3hI2P83hwRfNxuNsTU/YX3eCtf/Ljn29uTPrJDPg4eUPYTjfTh5gBqeD06dOVwMe5NaLKwW4Dh3vvuK3aWzP6dZJZ8HGGsWqnizlop1L4OEUhnJFtQ2r5zW6emt9i+Q9DzIKPU5NVOcCamF45HFPycfr/nPXk+Gl+YGpu59mH8ndamRUf58hgNuVlm0Z55snHcavZ5GntvGLhtN+ftJh1pGcvE/NxZKya8za55iqUj+O8Keo6/7fVvou3zVuV9cPeHLPg42A+BCMfBxhC3E+dx/k/wMd5uvZmTJLgn+ADTmKPBevSJpqYj3NkKBsfJ2po5fBxUi/nTM4+nes7Jyl7sOxAp61G5+NQ9+ZG4JjsG8rGMZkztKL4OPNOBq58lDDMp2BDdLuv3x/fYnQ+DtVGGAGrKFas+gz9/4qPM5/JjI0rknaQBm/jHzgWIvvj8dA35JOS/gkwC9JXKVLE0HNF9Ti+aO0tjVfAPDDNaU6yC96wTgTLZEbDT0COvFo9t050vnNNUJhsF31s+HPm96Of5GgLaeOvejgwYSHaSVWIUfkfZjprnkbNUweegDusxWfHh38pmZw1HAXNnQOLa4VLZEBhkihSe25MrWpVZjGpUu/sMkfN2K747LJF4/5N/L5ZRPDKOav7Tp1yup9WdtmZrguP3K/m67Wjm+2b7r23vtbKLqs9OtPG6twFr8xeblnPO7dO1cou8+n17cc//90RtKregXl3p/aL1yrJ8aDh+ZGx+5y8tv3Y2rF0efYerZIcbeS93343bYpX7oKDUnHR7y+0mki13vXU4te/zvnOnXHs85WrvdYDUTVcZLvi15Cp10YEzDgc+HXbsX86AZEVLjpcc3zJQY+zgn39fncUJiZ3AaLquOjllAZui5p185w54++pXh+3bwCiGrjo07TSz37dsvmLDrk8PfS3nxiIrHFRvVMOJVMLNgtnW1zz7Tfw5k4gqomLzq1YVO1T5yi/eZJqR1/ldvkeiGrhon8C7gQMmrItYHe13VvPnd53HohscFFW7rMbp5TX/NbNjHrwZ60d94GoNi6qLt2wOu3Y55A1+/Y+2fvrXfgadXDR68Y+m+YdTwvIHX7H8vflzvCz6uKidn9Y5dU+ti1gUed0ydKsezFAVA8XnQq3+a2kyznPrXVlz4ZcWR4LRPVx0Yg5G2dxPFx4R4rezL0X5vgbEDXARUrfC/d2BGfwdgfWXhL2T/06QGSLi85eOJGjOtfGP+tRUYeXa3JHAZEdLqoa27uoJCvfd4u9Q+H4Y71HA1FDXDTMMXPl8CUrQ9YuvRXX8NSHM0Bkj4s+Ll3fv/Tdx5DVeX4uYUObPgOiRrjI98GgE4HXtvhPv9/99Mee+3oDUWNctLnEberuzA2+U1d9Xe7eXgzvaoKL5h+0tuqUdzl42pMxPYYPO2MDRE1x0VvpoTcve58TpM3q3Gnjl0xfIGqGi35vYuNw61oJb3qHFnv7vax3HIgciO/VcVqvjyfTvPa5pds6RUYvAaLmuKi7+91BTRLtgxek9H556+6tpUDExUW8J7GpypUXQjKmbHc6fLv5RVqyZQsOQ7JlTkmn+7ZzH3gtEDfv9Gzxe2eE2dA32XIBk4myHX1o14pTZwU5eY8mnG86kdyfspogSSGTRyEYBEydktvid2g4n1h3hfhYkUwGjBDeuEJHygDVQCFfjR7nxAW6lruDK4CoGNpXhPdb4izg3BipX9+XMkal+kXQfPysxTU2FvYM3nn5cuyKdS8KjEioNLKTmwsAcoQARTHxzzgivdgAXcOAw6TEYndREliZWx4vxSgU4P2kMi4YKZpxwgUeFFcEt1xiJIrbvXpuXNVEGVzYpVrhspsTb5OPQDWfQz8CLRMZvaKyIzZiWODKH2kW59V0up6eDXBd8IkWVaYuVYxIBfYvYyVc4IBoOq8xn5UWZwjP/ui4zmvXU17uW573Ukq0HH8sIlpOSIytvXwXfLB7o7TXww0b7LQTUz2Ba0EQe4igtYQKJBKs7xbUcb5d1TJoeQjn4PWLoqqG04iMABY21BnBAkMdX38WchjWn/9lH/xH2QdUD71Ssg9g3HTiqGLYmhKRfTASDIfPoorIPrj4pMT+dvWWQav/7dO9Wc3zNkZcLKkWyMDFEjZnUkGE5jFZf+GoSsk+uNH0UvKzLjLflU6yQSdexZ4wKQ0DotKaFRUwbsz0pKTysg+WbFzw14ePQ3yyf19xXP4pkRxXMVX2AVTdVRGb6vJMo7pKzz4YssIuXuZbVZjZakiN2Xl/9DBh9gHXFbcySPp4vhtmZSot+6CNg7DunHih59Hxt7/VjLCSmTj7AILTmhWcz6JKzD6wS3TrOOnOHd8FXfZfsF5gcdQMsg8gQticZkQIzGncb1vEYfDbzq4UCb/0bOibtsmh2otWKcfI3ijWpjLcW6h74IBH7hKLe8Jghzga/Aj8rmTtVqrA2OLjFfpeuOs2SSfHiRq/RL833YsmJHp0c+JMxLs5Ibs0pqZUQDvZR7wpsmvjtgdnVD2zcnjhO3vKITu8G3HIjl0uz1Oi2j8jtGoqTQEAKVCD8HgHAedKil5nZ/YYQMS4cIySKsHwBXL0YrvttKBg6qRJ/IwfA39ef/vWJPK09CZupk/LMlF5gB29HH7nU1V+4KqeDntGuDs1MAJgW1gBAyPKJE6Ues2Av9OZw/SHntJpxaJLa0yXLFY13lY1YuZTV96utU1ufP756Zt6WDIOUAa9eLKlFy/cMbK9YQ4wRbXhfls5P/QpDNx73ccpbnqQpxFUG8mqWncTqRblH2fp1/Ox/JbF76uFZ+dYe/ume7q1XF7zQIjJWhbD1oaYTYItixW07Ho3bIrhC2M2h2Fh5F1teHd8972eO4YOt58dcZRc5LcBLJ6pgqFPyMaVwPNhiR6NDt348lgAubqEJ/aYqLLHYJvDsv6GUWCQ6LQiUo/tyn9hmjqQv6VrUAEM/hvRAPRnPESpcI6zgJMbbWiunpdQCxQYboBFeaG3IY/jOhI9+wB66iQ++C+1TYuH0Wh5ooQhA+fcTxsncs/OCVj5s2RNh8ART8g2Bmt/jOgKiV8vz8ZU+/zVQvLvEO/5Xm/7PHooMJR/4Q5gvgJhtuAhClj3cMJgNjQk3EZL/ZrollgeFy8RJ2DDA3aNQUc3A+s//8mWvyFgTZ0ogevMYfXJrIKy59K3vyShsU3CcWcctmEo2JJcMdhwk7CYySSct2n1vmM3edD0d28CXX+dIqD2CFfIRGIJNzhBJkPYAiaH2YW4Lw7eB8esNG68SCaNUg/yRKkqhisH2xSl7paAekrP8p6oXuZaYl0XPkdgcEcDdK1Rh2+hEN3Rhs59O7ioYR1PVbBDJzSSEDE0qSpkleef6wd7Lany7fgnB+lTsvuMPYjuPqsvlzedqawEA6czPLYsgcitQ7kMVsBlODOa0X3WEbkmGuSUpKEGhxa6tem03x89uTbNd+Gd8I9e3wr/JVO18QGCPtIhS409iyFauaxoJY2uVAeLeFGrAckKiTYOrbQ4O66BwKWVyFzh78S7+vqNgE5utERJYQnDP4YabjtsgYSKBY8Am+pktaqRWqYuTIZMEkOJ3G74LCjxQuiV447NAr0CYfbqzsXQV8DWKmLoRyGhaJ9rEbtRnuG/vOBg+JSkNbsoBxPwWyEOJrDLFQFFLisUYIjjC9USDsNC1f5LQ/ud3O8F+3klnyQO0b+RF2FsjDAdxDG5rM2CJKL4BKX6IEy9o4Pgqv1U3c66qAwxxreiuwZaQl39JOAJ5cTgpoLmjnoCdyAqxtAlqToPHotDAJDf9+Ha+q0vDPjLM/MlP9TOYlFL6n4onj6o1FfLW4OoPpaBaxAkjmdDqJZ5IXyjZ04YVHrtFRtQZ580jitEV+mdet9lQvIG3uxTzS60eDZxj0nPtzguOBBWKCcRJoUCIPC5t5Rp7qne3xrc4sjwgLS0gRafJjzfSY5IYQMZGlF64gJ8Wm04ovAuR9okVQ4D0G3CJOCLSeCpOBHGFuMtHZXyWL1mJ5WkyfDe9EiaRqQHg9xxLEA5CxVShWSELWMQPaUgRJCGiugpBf/q25hUcaiXqyDjsM80WdO6T0TWlwg5wY/NvL34vERUwM/xGvTdkaFvuxu7J5VxTMyRKhbffvDbFpw9l/9vE7mV3FxNTBbQOXcsnr+OjIyVjkF1L2UKLNaA4w1YFTBFkLiMfhbLv503zm9l41t75fY3m1J8G3gfwrfBLpeHzIvNSc0jBcXeaxTnZpVMuvrFCMhcGcOGDJgNZpDDxtFMPUxB5R2nN4JditQKghsPLJg1Cvvm6KhBSfTbhVFFgtQer9o+ir/jQh7H8Fn0cYxdNfYSANWRyqqOSNOog16mRo++bTWx6SJScVOk7SYhFSD8NCGsYHKNkDSH31RzYh43qhaUoIJ97DQfR9YIciWoIjW6OhSuuN047omI5MI4L5gd+Iq8jMOwIu8eIXw6LH13QGbdEZ0z7AqjyT5GuAQsoHrEa5poDjjjsTuhk4OHHnVbaKkpD6jXobs86uu6VrcA++QHUriJQC2xuWCJHSnVq7pFY3VLbfX3hN4cdm6OvRLyO2YEt5hZJPoYsN3pjti64b/7DDm/NHRDBePSEAsVakYnwYZfUlMbWKaSqeWxylqHqyQKbrx0ggSLh0lE4hhufALmWMAorfoDkAra+OuOm4K8/KDlgxyS/a+tKiRPb/hYusHFrlaEemayqmek2aqnvONPh7JtEJ6SV/7M8bqb9fwBJ8RvdffDa7tej5nBciL6faRLR0MiFRTHhroVM9CxgYrtwarYOiZXLLwJWx8NDLvVDacuBUjdUl1HfSy/0SfeSFfcLpaiDkkj3bCJhy+tyzkMS6vZtDqkhuWN0x6+AjodfpawdTq8IyEgX2H2kFOTMI0DOdURNQLkeWPZIJ8zloB8JRPkeqf/2mgsVsWn/yKydYkYByJblwhvILJ1v+cwZusS6b+IbF0i/ReRrUuk/1IHCi2BElpb5BCjJvMaIYEyh0nJLQNPutzdXcNns0XUqOvP65CVXF9NHeXL5PHw8BGjA9O3DJYMU6qljxS2co6BvY/VD8AICpC1gCe16LZzoCYwl/uKNHBQv6RrlBis53fEYCbdQO0p6oCZNEysFxOyiZq7jdUWkUPVADzAD8xZZlP2NTs34qRNcJrfruZ7j2zPNoS5XbGkSAXA6qoYP8QpoVqdkbB+qhh5qsuEla0mwUYbK3RG0brdBR0CN/vMOjPhrX+v6lOMmGQzdWDwxzObkny2yjP9ZvKSTxgBpWGsKHHF+p07OIcS8wqbbBhmxJSDxAEik5GZeBuRdW71xXbzfXfcG+ff5PnDN4aMMUNrKTnjgwhJ74buW55Yv0NRJ01QHUIk1qqACpcZkm1CgrOqu/C3d72PBy+7ljpXsKYHuYe3aTjwEKR0VpCGifXLEmjjLVV/cw3xqWzIYDR1ZgN1fLn04UH3WP+Dfx1pMOfSpclkTjrxXDonXSOpCHS6sKJTU0x4P6s4DAvjy4hgoYXbP/zF6y/4rA3xH0I9Y4hDlBWwYAC3BTk7QJM4mSjXqwkBtVyHrkxTXWkmwDDZQz/9Ag9BZ4Lhs+NRFUD6n90tYNOFsVHCtZdDr/b05q4mn49j0TGGZZ0kLM+KU02coXUFAFh1IFihqDHmCfzvZ1F6rXU2GFgSMNOYoYpc0aLP3JAI77QHI/dntepOzqGuLgD3ooHSElWySwBhAqOGBaZlUfotduUTsqmZCyYjZENLg40RSMjm0nxHNwwa3A6tZrJD/HYX3HpOuy/M9Vn7VtWzUTMqqzFWpOCqA26IaD6Ta95OfR/BHcaqnIi4cZJEeEmilIrxBVIns0QtFcTyhijepZZYj6xOv8RimIDNkJ10ZrxehsoGIzWrqYLgddBlq0snXYhe/hdvvc152eINHvXILhL2ALqLpL5c3pyjVk0ylNgCe5hDeFag5txB2MM8Ua/cpFrq92ErG+/68MP0ze0fem9euc9ibF69y5QYH3Y/Isanvl4ePntHvPUv6fGzX6owefiMRZK/jYBPyXg2fMDwMUWI1goLeo9XA9GHQ/2jX1+5WgNEymiJik1pvtWl8UETrnsV3Ve4db244ApZaer76UrDrxvbWEKt5LJqJcmstFJSRGhFr+WrNmbwFJIotmOqiBZF37UeW91rzcjrdxYutSRnE1gGYffTFYNfr4i0IsycwFgibb/6AKxiFon6bciaaDDANhYyaXl4PC0eKT/0Z13hTJuX1dt270EulFSNr34APUebEFQEImfGsyEyZzyxrq/hMKzr+QsDPwzt3ct/+ocvKqufbr0n61j9ibrzVPtodhjkBZybGCMVxwC3ElaqEsXHw/qYmhwrvc7vqVX/UO9LH5Pq6/pkHY/Hs45p5NUHYFd3JsFQ8mpT3NWAi71UXfIYHk/ymEk6TTJvtj6wca1w5jdFaUHN9eTKCdWYHBuNoJIXfywxOaEYbuAQZM7jThiGelmsPsH4iFI3eSGV/YHZZfHq+ABsLCHRkCWwM9+UYDTrhrqem7THDNzXYoDZowCDlb0BYPhkzmWazGZzOkUdTbqcTlXhljtIqWcZRjie8k5gO55qrcF8LRPmwQd8Lp3lnOSnDmnUW/oioC65BnkQLCSvkEnFWJEhuiFlQrpJEPAHwPKkAnfKuLGkp+hkJ6l1Ttlei14anSzXNXADueoTAJxzUIEbeEZRcwKCWkysJwhqMfwkfanFVLmxqMNsG7dmaoKWmvotV1L0hdTPJlGNzTVWP/XZv/lK9amusm4k/VTxos8OL9rsqEKZHaf8/35Sc54F79jeWVa72xfPMTRmAtQ5DKrT3QvhCZfCnjcTUKxhJpAcwiViObDQ+qDUcaNn2vQpS/13jMlfnCPKGEVGiUdHiVcuSn/Z9G7FL73uvfzz6svVJjVJMgJKNVlRepxcTGWLsuZOqbtPQMdIB4CoNRTIa5j6UfQ1DL9eEQFvbMSUogJNZ1wwpHB7uu6/zJ5Si0NXkj09mMRmT0cm/c+e4vqZddx/Tcmlgf75a5r42H681sYY9pRS9NsIliI/ic1SzEyqaHuaLl3/qk/HKb6Lf29ka+vXsacR7Ck1SGAElEayotQjqQLtKXUNNbk9xUYMoz0FSOH2dD2TPTWbPQF1OhmHsda1SqO3c/kK74KPnjH5V+eGGWFLsC+RbUuQnUhAvoEJcr0Za7UIyCuBsYboqECYekRHBYKxhuioQDDWEB0VCMYaoqMCwVijjgYaLQ3OaeQ4ojZcMAItbaPRNGldiZr8z1qPIPpwEJqkHuzTdGLBpBNqpwsj6GQTk06WPPu4ymXgHOGhcyE/+n7LJSd21ygj6pMVw3awZFdW5ToOlhHHH1CDTvqv6xMSFuQ1wLFlinuvsEktnUPa6+Q8Urt9WArl4rGSKM1NTF+BXqS2TKZrVnU7AadPLDBo3fgMwUyLWIQTaYHDhXAiMb+E4kQu+5JauHZBpH/B5q3Bnk863DZ2vi5y4SnDgjtepJTChDkk+tFPBHPyJZ+CD02v/mXJvy3msqMfgT+KG0L3hkLK9YaobVgMXI64QHtdYnFviF44qR2mPX1yERuUeUNlAx2J2nLFOyuPhruCU91nWC/5JlexosbkGaFiegY6RQ864pDApER6mYBOGCS4DdnMZENWHHwweMbjUv/Cg/sLd499SC4vVzVUFCeR0fuCMZkPRy+uAt6h1dyQGydXSdQ17VWSJBWegITEmdruB/EqurhF1uFipVwmC4OuLbyonTVFGaNUzTKNUauB8RLlAPD6xMe28ZYnwJkhlsEGZLDefJRUhX93sBWBx6GPUjdR9Eh0iKNlSbYVcBTjgB578jmpM/g1gkTKaGmcUDKaNCis1ZfDYKto7evV1dcHyBXaVymdx961FTSXjSuujYEYqoTl6lRS9VtVI94KtSgrRYn+cVGw24NmtFeHF+EZrdYlbFMvw7vZqY0/bEAtFcn4sAWBRjWW4SqlRBSr+RnLnS4zIOqhuoVpqJqN/05tPmWkmD51/BvBga+jZHPgS8YR5mGr2WNOXU7M9xwlVcaG+UgZgfk2JszN2tVGtGsjXG1EuzbC1Ua0ayNcbapidXe1qd3cjOBqb2fSSfXwpeM3JYzx3vWqVNKdu/UduT8KftZP9ELVva1MY4IlEMcNUUjifIWabq26cQCoXetYX4vetoXyC7pm9QNnq3QSPKAFjvQVWjTWVcBxnKRXVn8z9SAl2hfhDVS54hhRHFiukF98WdtrVkM2Z/jt6RY+dt7j5qvIHABv9RPoHABCUBEdwEsmsXUAPzPJJFypqmIArWb637x585s+ef1csmKI1rQYtUAGHRGkbkISw35rIXsXkv7jqswJ8unWlC5c+EMQXbgISUVoJ5dVO0nmoB1gjb7pQyhsLsC6CsPcIpKaWFu1L/7uYOTPky8FHvvc9XJM+K2xZOUI8D7FdOVoJBWhnFBW5Tiag3KgfrSVQwTmmJTT3SsWfiSmE63mzequPR5cuUI0Djb56Yj9VPYb6BkVW6UkJzyqMKjo+cIJMYsOTSMXQh2g9Xx6IVSStCKUx2FV3o2Jpi6uwNSJyaIcDXqUaRB26k6OA+4sUB9QV5w8DqoO/EsmT8SE8Ed3KIoVJakvIPX4691Hfp8/+YUUyG79dXl9yhpKOZoYVCYEfrkiNJc/kU1zM02uOXgTjI/pxY6rpw7ASOOi2Q2hlzjXekAHle/Mb706NGgUwTe84b2hZ1yuuA8B9w5naG6VO2YIcT81j8PgpzaySAk/cfhDSJHVridtu6WQW/3a8NUhmVClZLxUkkgv/chEZm3nBcvWx2uFdbAOZNESeaxEpUzmKtQPjK/tryZw+seFSeLwnQiz80rtq8z2rnQiAVluEwH+o5ArVT5SmUr9wSh3n5HrDsZ7gymw9CiKYOAONHNkMiPRFbmv9SWwwXKlsXfUyaPn1g0b93fSIcGufzk+YcIRy8nDkngqfVhqJOXteKndMQzd8ULWD0TOE2VHSsB++PFkvXJbbAdouTBc+XiJUillaHpc9PV+a98XbXyWl2wedsVv4ErDpzAFK6qNMAJWYByxYJU9uVJtLhGRrIZvueAvQWfnbu7db1YS3OMjLvLced+qYmsbdVW1IjYGxK/C/9fUdnvId2i22zuYzNj/urj+R11cqe3oK6WLKxd4Er1Si2FRD0TyX6iLgPNhSkV0cR3n+O3QZ9sBQbM6/Hbq+eitZN6oYQUmjGwjPQFC3SBCs1DzHja9bJlaKV1cH31pP7rAuUHQ3lrTpgbV3tTOpFWuISo2rKiAcWM2ewf9cv2M18V16O9rGnH6xgQUDNmzp2VV5w5m0cUVqu7CFDbVbTCN6iq9i2vcsvjG1ebW9Fww9Pah1V0OLzNhnRYYeMWsDLLIRq4bZmUqrYurW/Gadg9+ieQtzJ6yceH4AksTd3GF4NiwggOMTeV1cX1do8GwBdIbnscSPY5tnvTrDjOoYAMRwuY0I0JgTuN+204Og98m8HLq8M3jqteWew5bf1n9pjO5dAiWt6uQy8CKTvfZrBhw7lp2RCItux8vfwMQV8oTomO4sAoyFqrRp3zL701sHG5dK+FN79Bib7+X9Y4zvi290ImWUEd889uAjdJUgK+ID4MuFHxTwfb+YKqhuZQNyl4LcoHUWCC/+o+dSy07nP6dv3DMpaCO1bbnkrdOEZAegGrMVyYpz4WiGkYDXagrAD0riF5zPmJ0noHOgn4uVE319I2SRCslaP/S1uXWg6eCXN4M600/Fv4xex0lKRK7EZEUqb5u9OAQ+P4PUtm+/4VUUztLmpGph6MEX1kqj5KKWcpZLd32RFiYWhqUIwl81PxdRAvyWCUeQB+rGklFKOMgqzI2mEYZ9OL8epxYuAbGyVVg+RKJYezU0d0DbFnBziLWmdvRQxwjV0Y5czt5xI9TqrAf0N5q9R0FNwPGz/JMH9FhhsUE//7kdQ1+QLgqWUafNlqiilBWFquyJprFzIGP0stbtS0LdMclKEfFs8yghK/NOwyfvjb4cJXqL378recDQ7bKhm4dOuKGHGZ3X6GqQ9FJMPCVnl4qbslZvK2jUosJG9tu8j9qe7N5i5zUCNNuewEAV1NxAG4gAICmRS9PlFjKmOvKtIxbPiXarqrnbPd6J6OETo9Nmt8PAVjNBsC2tFTC0dzF+e/i41TtOK3Xx5NpXvvc0m2dIqOXVBofp0YaGx9n3dSK5uPcfFk8asetML/cV8322+VPqGcGfBzLNLbTzXdTzYBUUFRUVAl8nLEtj65YnCIWFr7gcDq8zC02Cz7Ovals2jlnDtqpFD5OWtOZ9W+GnPHe6yNds1d4yMos+DgFrMpZZw7K4ZiSj8N5/HfMb6XDg1a/vFNFWnvYfLPi48xjVd4E0yjPPPk4Ee490jIOq3wLimolfent+sLEfJzRrJoLM7nmKpSPYxvbpc+44kLPNZHj+16W9BGZBR8H8yEY+TjAEOJ+aj7n/wAfp7v73UFNEu2DF6T0fnnr7q2lJubjzEtj4+OMSqscPs5lu533vDfu9p9ZVDgnc5DygtH5ONS9uRE4JrPS2Dgm49Mqio8z5Mj1hs6bZvmvbnrzt+4PPp41Oh+HaiOMgNUoVqyC0/6/4uPsZjJj44qkHaTB2/gHjoXI/ng8lNyOwrp/AsyC9FWKFDH0XFE9ji9ae0vjFTAPTHOak+yCN6wTwTKZ0fATkCOP9yQ2VbnyQkjGlO1Oh283v8j4fvSTHG0hbfxVDwcmLEQ7qQoxKv/DTGfN06h56sATSFWBUWnHh38pmZw1HAXNJ6qKa4VLZEBhkihSe25MrWpV7mFSpd7ZZY6asV3x2WXDxHX7/DH6lGDBg/fn13daL9LKLuN++jX03od6vmsaddzm/2neAa3sslrWUxOvf1V5rRk2pptNemOVVnbZzp9s73zNueG3aF2+w+QTkWFaJTkajTjcY1yfHN8ZvSYelspaFmmV5PCKVDy7u1YQMPeR6/7J3U9FazWR+stZsTk1YaJ3tkP3qmMWjhcAUTVcNMjm5au8Ti8Clg+KPHhzYcp1ILLCRVa7Pl/YV0UaWNgotdnmY5GfgKg6LrIcPPBv/tpjgn1PT88cM2BXHBDVwEXt7wavfpKZGLIx9+vnoa87nAYia1zUrP2/79+9HeWTvspzRC2bN6+AqCYuuvfo3cb4v8WCpeHWw3ff6xQLRLVwkfDJH8O2bkgPzju/ccl3F2JuA5ENLpoRYuN+27fYq3CxRdzKD1V/BaLauGiC5aklaV2O++QsuMjdP3SvExDVwUXdnxcnjwkXB2/a8+zf9j3dAoCoLi6qUluQd7fxDt+pvg1vXH20tRiI6uGiNn6DH9XxmRWyIq5dQHBh3ZtAVB8X3e6WXNQ5IpE/fWTYbOdWq84BUQNc9OTQioxT82v5T33V4qe3q6vuByJbXLT78v7pjWd2ESxf8jKtj+Uz+JXtcFH/s9uepataBOxP2vDy1EShCxA1xEW/dxvf2/O3IMGeJjMaVG+/fwoQ2eOil5cH+I36vj+vcE27r54X5HCwNcJFNSe+e76s/5SgWcedxlwomL4RiBrjovwl9cbFX94cmD7CYu37NDsoaoKLmsfc6dW3VqfgtR2XZJy4dgp+VlNc5Jt+qO3eW35B85rY7q1edZ0FEDXDRfa7ol9vP7E+cFt+6dnGtr2XAZEDLuL/npm0MT2Pv9HexeNA3X67gag5Ltqksqv7cem8gCzV8pb1v9sCX4OLi7bueXHnqyBSuG7ubMe+63qdpCVbtuAwJFtGNbCv5X75ftDCkT9svRjhFoMwG/omW+5lMlG2ow/tWnHqrCAn79GE800nkg+nqwmSFDJ5FIJBwNQpuS1+h4bziXVXiI8VyWTACOGNK3SkDFANFPLV6HFOXKBruTuwAsSlF0P7ivB+S5wFHF66fn1fyhiV6hdBfrfhPGFYw6jvvDbc59Vv59HmpREJlUZ2cnMBQGMgQFFM/LOIdL3YAF3DgMOkxGJ3URJYmVseL8UoFOD9pDIuGCmaccIFHhRXBLdcYiSK4t8/euafsgpeVvzDM887n0PJR6Caz6EfgZaJjF5R2REbMSxwuaabxXk1na6nZwNcF3yiRZWpSxUjUoH9y1gJFzggms5rzGel4e3Xn/hsWxy488q1yEWPTvSlRMvxxyKi5YTE2NrLd8EHuzdKez3csMFOOzHVE7gWBLGHCFpLqECiK5DVmbjQctPfXgWXVnAiI55mGU4jMgJYPFawwFDH1599nP9lHxgz+4DqoVdK9gGMmzbIKIatKRHZByPBcLiq31qpY/ZByT3VmJXf3vkdbrKlXrX4oTFGXCypFsjAxRI2Z6oDEZrHZP0/67dY/qfZB/6P3i3ov+o3731zU9r8NCFqqUlpGBCVZ+lsqFw1zZqow0lJ5WUfTE9/vK2//Z6g1IEf+u2JfXfCLLIPoOqOs6ouz1zdGSNnH7QL+ef9pJxGPoWdVza58mbNDybMPuC64lYGSR/Pd8OsTKVlH6z/Etvyw+ad/LnNbHKa3ptIjgdWfvYBBAczNozgXE2vxOyDTo3/mXu2+wbfw1PtG1gGj/1qBtkHEKHjrAjlafy2/RwGv+3sSpHwS8+GvmmbHKq9aJVyjOyNYm0qw72FugcOeOQusbgnDHaIo8GPwO9K1m6lCowtPl6h74W7bpN0cpyo8Uv0e9O9aEKiRzen6wvwbk7ILo1LFlRAO9nnYsdvO7su8ZsW8GfX+TX+PUc5ZId3Iw7ZscvleUpU+2eEVk2/QIAUqEF4vIOAc2yBXmdn9hhAxLhwjJIqwfAFcvRi+4B38/q+D78JtwhF0yzTY16Tp6U3cTN9WpaJygPswE/Xl3X+dXZQRpVD7q+PN5YZAbBtrICBEWUSJ0q9ZsDf6cxh+kNP6bRi0aU1pksWq3pm1enJwvSfQvZOu7oos6a8qB6WjAOUQS+ebOnFC3eMbG+YA0xR7aD0u/Wbjv5DkON9ot+0p89KjaDaNFbVxplItSj/OEu/no/ltyx+MaXtsnZdbvln/qAK2zU3NtVkLYtha0PMJsGWxQpadr0bNsXwhbGAw7Aw8q42vDu++17PHUOH28+OOEou8tsAFs9UwdAnZONK4PmwRI9Gh258eSyAXF3CE3tMVNljsM1hWX/DKDBIdFoRqcd25b8wTR3I39I1qAAG/4kZAPRnPESpcI6zgLNphqG5el5CLVBguAEW5YXehjyO60j07APoqZP44L/UNi0eRqPliRKGDJwm8W7Hd3c8wsuuUfRlpEWElGxjsPbHiK6Q+PXybMxs4c0Pn8d38lr3+9u7S7f3HWpoZALAfAzCbMFDFLDu4YTBbGhIuI2W+jXRLbE8Ll4iTsCGB+wag45u5v70fa3XVzJ9th4+PPdK+oiuZFZB2XPp21+S0Ngm4bgzDtswFGxJrhhsuEk4wGQSztu0et+xmzxo+rs3ga6/ThFQe4QrZCKxhBucIJMhbAGTw+xC3BcH74NjVho3XiSTRqkHeaJUFcOVg22KUndLQD2lZ3lPVC9zLbGuC5+jgBMG0bVGHb6FAnTbGjz37eCihnU8VcEOndBIQsTQXGPemQ3LvnYRLr5bevqBe18vsvuMPYjuPqsvlzedqawEA6czPLYMhsitQ7kMVsBl6DWD0X3WEbkmGuSUpKEGhxYSvsHTmrg3frgnZPaoOWsnTm+bSKZq4wMEfaRDlhp7FkO02rKiVW9GpTpYxItaDUhWSLRxaKXF2XENBC6tROYKfyfe1ddvBHRyoyVKCksY/jHUcNthCyRULHgE2FQnq1WN1DJ1YTJkkhhK5HbDZ0GJF0KvHHdsFugVCLNXdy6GvgK2VhFDPwq9aD0peJe647pPlvVGh5MPnsymHEzAb4U4mMAuVwQUbVmhqKdZqA5yGBaq9l8a2u/kfi/Yzyv5JHGIJjc5ssbGCNNBHJPL2ixIIopPUKoPwtQ7Ogiu2k/V7ayLyhBjfCu6a6Al1NVPAp5Q65m4qaC5o57AHbCaaeiSVJ0Hj8UhAMjv29nv3cKDF0pC1to1+tx/SPJN6n4onj6o1FfLW4OoPpaBaxAkjnMhVMu8EL7RMycMKr32ig2os08axxUiMYq/tzF/RuBR321eB476qQYVmPR8i+OCA2GFchJhUigAAp97h5jmnur9rcEtjgwPSEsbaPFpwvOd5IgUNpChEaUnLsCn1YYjCu9ypE1S5TAA3SZMAr6YBJ6KE2FsMd7SUSmP1Wt2UkmaDO9Nj6RpRHowyMdkApSzUCFVSEZwykT0lIIQQRoqoqcU/KtvY1LFoV6ugozDPtNkTes+EVlfIuQEPzbz9uLzElEBP8dr0HdHhr7tbuyeVMYxMb8s2b9uW+qQoL2P3vWev3XdZnM1MVlA56Mz8fx1ZGQsLBPVvZQpsFgDjjdgVcAUQSdGOfBqh/V1DyrYLHC4+9fYBIpvA+9D+DbY5fKQ+XdcY17RyxRB7qKT+z9c3Mw1AjJ9WZEBs8EMctg4mqmHKai84/RGsEuRWkFw44EFs0Zh3xypL8eV8uF1vrMULJnKdbgsmulBHsfwWfRxjF019hIA1WHHqo7vTKMOepkaPfq21cSmi0jFTZG2m4RUQN8aa5fKfhjkOYtzt7vV5fMTqgUlqGAfO83HkTWCXAmqSI2uDoUrbjeOeyIiuTDOC2YHviIXchhW5N0jhE+Hpe8OyKw7onOGXSHZ77QMl4AFVI94TRPNAWc8did0cvDQo24LLTXlAfU6dJdHfV3X6hZgn1wMHZkS1BKbC5bY6XTnl206N1a31FZ/T+jNYefm2Cshv2NrofBNg5kLvGbufRBvuaf/TUPOLw3dUMG4NMRChZrRSWBG75xpagPLVDK1PFZZ63CVRMGNl06QYPEwiUgcw41PwBwLGKVVfwBSQXtWiG5fmcf1neN2eYnz0dJfyNMbPpZucLGrFaGeFazqmW626inv+NOhbBuEp+SVP3P+npix67p0sueR/otfro2vNo7lRPT7SJeOhkQqKI4NdStmoGMDFatkVexwkysW3oStjwaG3eqGU5cCpG6prqM+lt/oE2+kK24XS1GHpJFu2MTDl9bDHIal1WxaHVLD8sZpD18BnQ6vTmfrdHhyOgH5EbOHnJqEaRzIqY6oESDPy2SDPEfjQB5lglzv9F8bjcWq+PRfRLYuEeNAZOsS4Q1Etu73HMZsXSL9F5GtS6T/IrJ1ifRf6kChJVBCa4scYtRkXiMkUB5jUnLLwJMud3fX8NlsETXq+vM6ZCXXV1NH+TJ5PDx8xOjA9C2DJcOUaukjha2cY2DvY/UDMIICZC3gSS267RyoCczlviINHNQv6RolBuv5SUhWvoHaU9QBMyk9Qy8mZBM1dxurLSKHqgF4gB+Ys8wG1S2ZHMbjBW2/fSguJPevG4YwtyuWFKkAWB3PwA9xSqhWZySsB5aBPNVlwspWk2CjjRUSpZMWsqn3XReGbPuyvc7oTo+aGjHJZurA4I9nNiX5bJVn+s3kJZ8wAkrprCiNztDv3ME5lJhX2GTDMCOmHCQOEJmMzMTb2bFHnRYH8IVpdxIkE+PSXU2YHXDFGR9ESHo3dN/yMvQ7FHXSBNUhRGKtCqhwmSHZJiQ4tdPP9uqb+o2/Kfdew5UNA8hNSk3DgYcgLWMFKT1DvyyBNt5S9TfXEJ/KhgxGU2c2UM7Raz1Cb/Tz3VB30Kp8J4EFmZNOPJfOSddIKgIdBSs6wzII76eIw7AwvowIFlq4/cNfvP6Cz9oQ/yF0Wid9JbRgALcFOTtAkziZKNerCQG1XIeuTFNdaSbAMI2CfvoFHoLOBMNn3aZXAOn/ruhk/yo+Mp+9SX+qRhTMrE8+H8eiYwzLOklYLiGRYuIMrSsAwBoOwQpFjTFP4H8HTNdrrbPBwJKAmcYMVVLgd34Tn60RFLXb3L5O+5QRZEskAPeigdISVbJLAGHqxgpTy+n6LXblE7KpmQsmI2RDS4ONEUjI5tJ8RzcMGtwOHWeyQ/x2F9x6TrsvzPVZ+1bVs1EzKqsxVqTgqgNuiGg+k2veTn0fwR3GqpyIuHGSRHhJopSK8QVSJ7NELRXE8oYo3qWWWI+szgnzi2ECNkN2Uq/5ehkqG4zUrKYKgtdBR7Ge95y5uVG875IFrh3v7/56huwiYQ+gu0jqy+XNOWrVJEOJLQCe8RCeFag5dxBWspuvV25SLfX7sJWNH5szbuqW2RsCsi/HWR2b3WEcJcaH3Y+I8amvl4fPjG+uf2zc8tV70c3HS4JvRWwyAj7BrPiA4WOKEK0VFvQerwaiD4f6R7++crUGiJTREhWb0m43fT3K6WFOUPZmtwP8V622kJWmvp+uNPy6sY0l1EpbVq3UMyutlBQRWtFr+aqNGTyFJIrtmGrB1Ae/tY4eIdy+eOkPW+Y1JvM4LIOw++mKwa9XRFoRZk5gLJG2X30AVrHI+fptyJpoMMA2FjJpeXg8G/24u8+rIl5GMe+GW8IvnuQcbb76AfQcbUJQEYj0YkWk6XxiXf+Rw7Cu5y8M/DC0dy//6R++qKx+uvWerGP1J+rOU+2j2WGQF3BuYoxUHAPcSlipShQfD+tjanKs9Dq/p1b9Q70vfUyqr+uTdTwPzzqmkVcfgF1d4TxDyatNcVcDLvZSdcljeDzJYybpzH/YplHC11o+K6Y8XrQxv8FR8uBjcmw0gkpe/LHEZIihO4rMedwJw1Avi9UnGB9R6iYvpLI/MLssXh0fgI0lJBqyBHbmmxKMZt1Q13OT9piB+1oMMHsUYLCyNwAMn8wnmCaz2ZxOUUeTLqdTVbjlDlLqWYYRjqeS5rEdT8VoMP+JCfPgAz6XznJO8lOHNOotfRFQl1yDPAgWklfIpGKsyBDdkDIh3SQI+ANgeVKBO2XcWNJTdLKT1DqnbK9FL41OlusauIFcdZj4OwcVuIFnFHeyENRiYj1BUIvhJ+lLLabKjUUdZtu4NVMTtNTUb7mSoi+kfgYs9N6ypMrKwPQDJ8+kjG5CHjZVvOizw4s2O6pQZsfqeU8aHTnnFFI49KrDYIuRhvYAzwXqtIDqdPdCeMKlQFqShWINM4HkEC4Ry4GF1gelR+3GfDzWZIf3vJWLCl5ceVGLjBKPjhKvXJRKa+XfLZGE+qw/nXkqdnPJWCOgBIY1C0pnsoqpbFHW3Cl19wnoGOkAELWGAnkNUz+Kvobh1ysi4I2NmFJUoOmMC4YUbk9P/pfZU2px6Eqyp52y2Oyp5f/sKaGfiRsH7fR/vydw8Z0RKZ+dJj42gj2lFv02gqVwZbUUjSvcnsaOa5XT6lhf3pLrirgbHi47jWBPqUECI6BkyYrSu/kVaE+pa6jJ7Sk2YhjtqaXGnp5isqdmsyegTifjMNa6Vmn0di5f4V3w0TMm/+rcMCNsCfLns20JcjUxlWImyPVmrNUiIK8ExhqiowJh6hEdFQjGGqKjAsFYQ3RUIBhriI4KBGONOhpotDQ4p9HhYkrDBSPQ0k4bTZPWlajJ/6z1CKIPB6FJ6sE+TScWTDqhdrowgk7OMOlkybOPq1wGzhEeOhfyo++33JbkCq9lRH2yYtgOluzKqlzHwTLi+ANq0En/dX1CwoK8Bji2THHvFTappXNIe52cR2q3D0uhXDxWEqW5iekr0IvUlsl0zapuJ+CoZgFT1Y3PEMyMnIVwIi1wuBBOJOaXUJzIZV9SC9cuiPQv2Lw12PNJh9vGztdFLjxlWHDHi5RSmDCHRL+/ouu5pQsLPQtW8627/nG2kB39CPxR3BC6NxRSrjdEbcNi4HLEBdpTzMK9IXrhpHaY9vTJRWxQ5g2VDXQkatfGNmr5PoHjvWdS2zvXd//1jhU1Js8IFdMz0Cl60BGHBCYl0ssEdMIgwW3IWSYbsuLgg8EzHpf6Fx7cX7h77ENyebmqoaI4iYzeF4zJfDh6cRXwDq3mhtw4uUqirmmvkiSp8AQk9OiktPtBvIoubpF1uFgpl8nCoGsLL2pnTVHGKFWzTGPUamC8RDkAvD7xsW285QlwZohlsAEZrDcfJVXh3x1sReBx6KPUTRQ9Eh3iaFmSbQWcWXOAHnvyOakz+DWCRMpoaZxQMpo0KKzVl8Ngq2jt69XV1wfIFdpXKZ3H3rUV1J45p7g2BmKoEparU0nVb1WNeCvUoqwUJfrHRcFuD5rRXh1ehGe0WpewTb0M72anNv6wAbVUJOPDFgQa1ViGq5QSUazmZyx3usyAqIfqOaahajb+O7X5lJFi+tTxbwQH/t4cNgf+0hzCPJw3e8ypy4n5nqPYzWLD3FJjki8wYW7WrjaiXRvhaiPatRGuNqJdG+FqUxWru6tN7eZmBFf7IpNOqocvHb8pYYz3rlelku7cre/I/VHws36iF6rubWUaEyyBOG6IQhLnK9R0a9WNA0DtWsf6WvS2LZRf0DWrHzhbvyyEB7TAkb5Ci8a6CjhjFuqV1d9MPUiJ9kV4A1WuOEYUB5YrdEu7NvZdpp1+E5LXqdqAO12/l5A5AN7qJ9A5AISgIjqAX1rI1gG8cKFJuFJVxQBazfT/+eefv+mT188lK4ZoTYtRC2TQEUF3thiysiAqvX5QToPId03tV8ygdOHCH4LowkVIKkI7m1i1s9ActAOs0Td9CIXNBVhXYZhbRFITa6v2mh+eeHx//ydBxi+z7x9abtGfrBwB3qeYrhyNpCKUM5lVOWPMQTlQP9rKIQJzTMrp7hULPxLTiVbzZnXXHg+uXCEaB5v8dMR+KvsN9IxKO9eiy5cfOMHHTrmuq5uzkdwco+YArefTC6GSpBWhvAhW5fFMozwdOjFZlKNBjzINwk7dyXHAnQXqA+qKk8dB1YF/yeSJmBD+6A5FsaIk9QWkHuW/XlxbcqU2/1hDycfQ1vbtKOVoYlCZEPjlitCcK6vmGptcc/AmGB/Tix1XTx2AkcZFsxvCx7/NPv9+/sOg/QFzpk4eP+aq4Q3vDT3jcsV9CLh3OENzq9wxQ4j7qZc4DH5qI4uU8BOHP4QUWe160rZbijP5cJ6vDsmEKiXjpZJEeulHJjJrOy9Ytj5eK6yDdSCLlshjJSplMlehfmB8bX81gdM/LkwSh+9EmJ1Xal9ltnelEwnIcpsI8B+FXKnykcpU6g9GufuMXHcw3kcugqVHUQQDd6CZLosYia7Ifa0vgQ2WK429o04efQdbIb9DwCfBltli+6653HrkYUk8lT4sNZLydrzU7hiG7ngBcsMgcp4oO1IC9sN+i/TKbbEdoOXCcOXjJUqllKHp8YH96x6Iby70PnK6R4mVg9zC8ClMwYpqI4yAVRdWrLiLKtXmEhHJaviWC/4SdHbu5t79ZiXBPT7iIs+d960qtrZRV1UrYmNA/Cr8f01tt4d8h2a7fZnJjP2vi+t/1MWV2o6+Urq4cmGP0uxiWNQDkfwX6iLgXKHbTiN0cX358PjZd//2CCwY3W/OuberHxmxwISRbaQnQKgmRGgWat7DppeldBtZEV1cBQGvQ/79c77n0Vd5N4/Va01uHljZVa4hKo8XsaFypXKtIeveQb9cP+N1cc0pnXNu7vkqwXOmTvzncOOhE8yiiytU3RFW1W0xjeoqvYtryul6HWt9uixMazZcYT1joo0J67TAwCtmZZBFNnLdMCtTaV1cp2bV/nXXgan+myyeOdW46HXHxF1cITiYsWEE58qiSuziyhnT//U/mVu91/Qt8MtKaUhuN2CaCjYQoSOsCIE5jfttVzgMfpvAy6nDN4+rXlvuOWz9ZfWbzuTSIVjerkIuAys63WezYsC5a9kRibTsfrz8DUBcKU+IjuHCKshYqEaf8i32u6Jfbz+xPnBbfunZxra9lzG+Lb3QiZZQR3zz2wg4j+D0FPFh0IWCbyrY3s/LNjSXskHZa0EukBoL5FfvfXS0y6q0+/xj6xJvdJL/SO40YxUB6QGoxnxlkvJcKKphNNCFugLQuwfRa85HjM4zYMU5l62XC1VTPX2jJNFKCdq/DP2j48xHf34vyPlUMqSP6+tTlKRI7EZEUqT6utGDQ+D7F7B+/3XZpnaWNCNTD0cJvrJUHiUVs5SzOuJycfsx95kh0/zWv0tO/qEReawSD6CPVY2kIpQxj1UZE0yjDHpxfj1OLFwD4+QqsHyJxDB26ujuAbasYGcR68zt6CGOkSujnLmdPOLHKVXYD2hv9e6cvtGPR+0X7Bg8OyFgR83D5HUNfkC4KllGnzZaoopQ1mhWZYWZxcyBj9LLW7UtC3THJShHxbPMoOcFb//4YeLCgKn91u96MXvPUUO2yoZuHTrihhxmd1+hqkPRSTDwp2z9vFTckrN4WyXcQN8Tjnkhs85NEmx+GJ5h2m0vAGAbAcANBADQtOjliRJLGXNdmbxdn9ddbrFbsKJpzOsrbV/XpyxllZvfDwFQsQGwLTKbcDR/5vx38XH4v2cmbUzP42+0d/E4ULff7krj4zxYzMbHSVpc0XyczV+DXvjZVA1cGODa6W2d92Iz4OPcWcx2unlmsRmQCg4ePFgJfJxHEf8ohyy/EbwqaeAfOf8E1TYLPs4+Vu3kmoN2KoWP07mEPyf09ZHAjYtP3Ij9a2+yWfBx5rAqJ8kclMMxJR9nQ/il7TuDJ/ovaLZumWfsuodmxceJYlVeqGmUZ558nFcHD8urDm/vmfboxKu8bt9yTczH6cOqOUeTa65C+TjcOfK0J2OFvFV1WxQND2i0zCz4OJgPwcjHAYYQ91N/4fwf4ONsUtnV/bh0XkCWannL+t9t2WhiPk7UEjY+To8llcPH6X+vxo/Z/e4Ktowr7hfhIRxkdD4OdW9uBI7JyCVsHBPhkori43z0cphiN+hc0NzFb7LFn3O2GZ2PQ7URRsCqBytWrZf8f8XH+ZXJjI0rknaQBm/jHzgWIvvj8dA35JOS/gkwC9JXKVLE0HNF9Ti+aO0tjVfAPDDNaU6yC96wTgTLZEbDT0COvK17Xtz5KogUrps727Hvul4nGd+PfpKjLaSNv+rhwISFaCdVIUblf5jprHkaNU8deAL1YC0+Oz78S8nkrOEoqF1nXnGtcIkMKEwSRWrPjalVrcqrTKrUO7vMUTO2Kz67bLOgS5MGrlf5ixWTxAeqeOdoZZddX1awe+IvSsG+/bykR1EzH2lll12rM1c2q9Er7yNvJcq+OSc9tLLLgjr+Hp7rlC1YfiB9x5BHB5tpleSYmbx6yuBp3KA5Z1xHdP7Q55NWSY5mz08tkRY3ERQdrn576ou8K1pNpLotXswRttrrv/Vo5Nwr73x5QFQNF809NmQC95xv8I6UpdETDt/6AERWxANHr+/Raus63/ymLd6l1fj+PhBVJ0TylYVNHaZ5LlhxrZ7X0eYyIKpBvHyj4Vdin8QFbXYfsFU143YdILLGRTvD//T5+GNy8MyNIz71/XfobCCqiYsGDZfPKy1I9FonEvbYKN8Hy1rUwkVrV7W+M2V9hPe0JR3aBTWuFwNENrjoTlBW4gGPo8KMkdfv1ek6vy8Q1cZFDfeeuZoaetNv9tC8e52Ob6kPRHVwkbzmiqM/efTw2tA+utXH3U3tgKguLnob51FnVcIQn/V7XwfUq3NzOxDVw0WcZY5BNwZY+mz86eTskEHTfwCi+rhoe5XsFEW1DyG7m7T121XwpDUQNcBFvdbUPTXfaU7w3DujL/07Keh3ILIlXuNhP27iKwfvfTOriW97HM4HIjtc9G2045s2Y7Z4TZ8+MeDVcJkfEDXERUdFnKXrznf1mxXW/Glwz9RSILLHRWOnTBy761BC4Iz8OT88eHKtFxA1wkVdn7zalRpQFDRryPROa088ew5EjXHR7HGq4GHT6gozhiTkLUxbFgJETXDRj5YvLldLbSDc0+WTVY2D424AUVNc1GBkQMvOPbf5HPnyQNlC6p0NRM1w0eSiyQeXZMkCFv10stG5B+cg8g6EvqRNN7Ta8Jv/ke9Pf/N6EAgHQHNcdNEv9CfZh7+DZ7Yc10g+YOZSIOLiot+nPU+a/KK616ozF461nH3Lh5Zs2YLDkGyZc2mltUva1IDttz4Nu/yt1juE2dA32fIak4myHX1o14pTZwU5eY8mnG86kbwtqyZIUsjkUQgGAVOn5Lb4HRrOJ9ZdIT5WJJMBI4Q3rtCRMkA1UMhXo8c5cYGu5e7ACvBuaTG0rwjvt8RZwCleql/flzJGpfpF0P6/06LhX0T1gjKWcUdwD/zW14iESiM7ubkAoNcQoCgm/tmtpXqxAbqGAYdJicXuoiSwMrc8XopRKMD7SWVcMFI044QLPCiuCG65xEgURTnPTwi2fuQvk92TV73VdDn5CFTzOfQj0DKR0SsqO2IjhgWuPUvN4ryaTtfTswHu/2vvOuCaur5/UEQEBbfiwLhRWWqdVUsCYYYh4LZqhCdEA8EQEGcdrbvugRu3oBXqYoijKtRZrbuOuq1bnLV1/e99I+S9d98jzwSSfz8/Px9beZf38vI9955z7rnnnK8budCii8WljVVowf5lBCYGDoiOeY2HPCu3Znif91d99n3Vq02nu9dkjGg5+VhEtJwaMbX0stzIye6Dkl5nD3yys05MBQLXmErsoYLWGBNIJFhpvZ1F2zquDpl9w/FG18aPJManEZkArEJesMBUJ+3PRdH/qg9MWX3A9NDLpPoAxk1TUwshNSWi+mAImA59U0uj+uDV2yEpr85fCJl/4Zzf3qbVH5jQWDI1kJHGEpIzLYIIzeHS/hNTy6T6QONdOWDW/RDZ3KsVhy0Mm9HUrGkYEBUVLypg3ljoSUnZVR98Wpu0YPg3Dt57HK7vvrVibjOLqD6AovPhFZ2neURX5tUH53o16GebmOyfP8+j9dYTc743Y/WB2J3UMsj08SwPXMuUWfXBnKXe1qv6TZPuFw9QdViymt4woeyrDyA4Kl5w+qaWYfVBN+fkkFkXdvjOtO5X8VnvlIEWUH0AEfLhRQisadJvuyTi8NuOrVDIP3ap4zd5k3PFR03H0qVui9NURvjIDQ8cSOkssaQnDHaIw8CPwO8arU+lCpQtOV+h70W6buMNcpyY8Uv0e7O9aGpEAJtT/40kmxOSpbHexlKgk61e0fWEMj5Luv7omsV5FcKqMQ7Z4d2IQ3b8ckmeElP/mYCqqTcEKAE1CQ+2kYmkGwWdndXFAaLmhUu0UgOmLxhHG9uAgn09Hm7Ikqxq/+DAcZ+Vh+jL0oe6mb0si4dKAmznLy3qxEV+HTrfNut4lY4HjG1RDwFz5wUMzCizOFGEzYC/017E9Ydd0mnLI0t7XJY8WlVy/2rowN5H/FIDXBc4j7v9ujpejAOEwW6ebCORRrj0bWWcA8wQ7a4Pn9Y8uy/xXb6/x8QLY5qdMoFobXhF+3KD5fjH84RxPpZMWaxtcmd4/yZOfmtswzc18co7YDbKYkhtiOskSFmcwKqu98CXGGkYL4s4DKP0fJ3ryZ12ev00YFDdWb330Zv81oTNM7Uw9AmzcTF4PowJIDr08FbHAciJFp74Y6KLH4NvDov5DaPBJDHIIjKP7Up+YZY4kL9laFABTH7fFQD0B1JEq3CRq0zUeoWxtXoSuR4oMNwAm/JCb0MdL3ahOPsAekQRH/wXodMSYTRaPQrjqMAJCLwkaxOXIlnilKJ91f45nRXZBqc/RrBCktdL0jFvR+87Ffdhqvei7p5DW35Y9srYyASAWQphtpYiGlh3bo3DbGxIuLme+HXRrSh1fCIWlYRPD8gag45uDuvWpVOjmv+GrlqzYrx94X46c5x98XPZ21/aoKlVwkFXEraBKNhS3HHYSJXwB5dKOOHQ9FXbjurgqS+fB7mf+44e5q4SjiWoFFGYOCRJpULoAi6H2Y26Lx7eB+esMj5ZoVJGE5N8lFIbK1aDbYrGcE3APKXneU8Ul7nesKGGz0UmurgcoGuPOnwLA+hmLDd27deGRg1nPNVChk6oJCFi6JIS+7rH774uJ89998ewqVhyO7r7jD+I7T4Tl0tazsysBCOXMzy2PAuRW4dyGWyBy7B/Oaf7bCBy9XXIaWhTDU4tJHxLqvul1Z5XIWhpRm5k9/4Z39JTtckJgj7SoY+aehVDtDJ40VqyvEwdLOpFbSNHJ2D6ODTVy9lxDwIuLaZyh7+T6O7nPxg6uTGYhpElDP8Yq7hr4wYSChY8AmyqRxOiRkqZaZiMWSTGJnJ7kKugSIKQq8gTXwWCAmF1CeZi6Cvgtoqa+tFIKJ7vn7o4PviZf/aLmw8bVP29EeNgAn4rxMEEfrk0oMjghQJMcdJQXRFxGKpWH+vU3S4uL9stLXqPOcdcohthfI5wHcRxuawNgzFFYpKGOAgjdnQQXMJPNeysi5khxvlWbNdAb9BQPwk21FlBqgqWO+oF3IHZRrujlaTwWBwCgPy+eb27nn7QKzLw50XVak+YZtuEuR9KZE8q4mpJNojpYxlpg2Di+AYIVaoE4Rs9aI1DJWivWJO5+pTxYjkSo1ZzHo4cKK4bMn/i9vrfPT+x2aznWyI3EghblJMIi0Jn65zEq1xrT/vqSr/G+YMCJ0/uZf1+zEM6SWIlfCJDJcouXIBPc4QzimQ50k9SFXEA3TwcA18Mg6fiVBg7iqR01KjjBK1OZpImx3uzI2m6IQEZ5M9WApTnoUKqMBlh+0oEpxSECKahIjil4F+hxKQJuV3dZT/s9Z2ialDtnsL+N2qcyo+dcXXxCUyxx3ulpE+5/AEvOpmak8o0Kua7S2PsxxyY7LOj3sUFXdc0aWSpKmYekPmjlWT9OjIydnElir2UK7BoB+cb0CpgiSBxWdYwddXpETO8ci6M39tjyJALDN8G3ofwbfDLJSFTb8kFyaDb44J+8hl7qca960tNgMwhXmTAarCAGjaRbunhAirpON0JshQRAoIbDzyYNRT/5kh5nX7juPlBkaf/T3MzX3is7seYx/BZ7HmMXzW1CYDiWM4rjqnmEQe7TY0A3rbK+HJRaMVjlS3Ho32VLnFnW3tc81tav9XXdttjT1YMTtJCHjvdx9ElgrQEVkqTiyPBndQbB70QkVwY5wWrg7TI10QcFvnnwfL7A7//OXBGtcHtf6idF0P3MSIwYEAFxGvq6w44E/E7oZNDhh4NM7TMkgfU67BdHuK6od0twD45EMJWhDKxacDE2q0U1N2iHkGpTXxP6M3h5+b4K6Ht0st6zoHrJnjn7nzaLXTL+bPGnF8au6GCcWmIhRa1olPAim5ndgXL1TK1pKyyZhFaLEGcqByD4fEwTBEVK05Mwh0LGKUlPgApoDqHd+3s8tMr/8w+92qkVQrtT1/e8LFshYtfLQ3xOPOKx85ixVPS8adz8TaILMkreeUsa/DtoxYdg/3XbJn/ShLTtAHPiWj5vm5tjYlUMBwb5lbMSMcGCvbtCj7B3l5hbsHCm3D7aGTYrVoE0xQgZct0HYVofpMvvCHupF58hzok7euBLzzStF4XcZhWi6E6ZIblTUMPXwpMh32X8zEd+utie39aPuSMIkzTQM50RE0AuecqPsjFqyjIb3BBLrj810GnsUq//BdRrUvFOBDVulR4A1GtW17EWa1Llf8iqnV15b/sal2q/Jc5UVgFlFDbolMaGMW8JiigvMkl5CZBR9yu/2znu9k6eujFh1XpQq5BpI56q9SJ8PARTwdmbxlsOJZUE18lpHKOhdzHxAPwBAWYtUAWtRi2c2AWMJf4iixwUL9kaJQY2HP/ZWAlXUbtKaqClWS7TFAmZH0idxvvLaKGogF4gB+4q8z+HWZzeI26mU9O/tDOh+KL6D6rwMzt0k2KTABY+SwjD3GKmFpnSGuZqMUy5KkuF1a1dAU2+lghURrwesyB01YaSd6dlS1Cs/eWM2GRzaReIW+ObkrxTVfP8J8uHX3IBCjZ8qL0KFXYuYNrGLWu8MWGY0YtOZg4QFUycifexnxs+c3+lS1lk093WGEf1MzRmDlmbC8lV3ISIdO7ofvmuUzYoWhrXVAdQhSl1wEVmhmabkK3/grx6PT+7I7AnBZb11jJk+daQA48BKkBL0i2y4RVCTT3URLfXJf4VDxl8DR1bgWVXKPniH5nFwZvbZc964PMzYqek049l52TrhspDXRec1YIQHRu6ioEbok4DOPj3iFya49/vBevP+m7NjSgP/OMIR7RVsCaA9zG9OoAXeHkKLUgEgJmuw5DM00NTTMBiuk+nFQnpYh0Jhg+yxNm6gxL+t8/a8C5i3/c993p3iux7iLXyvTzcTw6xmHWaYMlaXGmijO2rwAA6zYEKww1x7yA//2bMFvngIOFgZXGDdWN4buGVKxZGLC6YPCd7W8L59E1kQzciwZKb6iMXQIIUx4vTJuWCTN2JSdkMysXzJaQDTUNPkdgQraY5Tt64NCQeug2lx7ybnnSo8uUG/I037UvtF2c6PnNVcKxOEWCmAi4IaL5XK55S+I+KncY73KiEMdjo+AlTKOMIg2kQWqJ2SqI5w1ReZd6wwKqOj+tK4QF2BzVSfvXCVJUDnhSM5EqCF4H+S3HnPao7Xt5vdePI61W5f2UOZLuIuEPYLtIxOWS1hyza5KxiS0Ann8hPMtRay4HOJj31wmqTapCvA9f23jZ+DDFmYVr5fujkjHfJtPLM2J8+P2IGB9xvSR8ugSPvP1x5Zvg3O7XTqQeevzCBPic5cUHTB9zhGht8aB3MgFENxHzjzBeuSqRCk0MpuUT2r+jF4Zm5vgGzw9/V2Vl6gN6YwIb4n620MjrplaWUCoZvFJZYlFSKTpASUWQ+XLEFV4CFs13TCVOHd23Y1ygdMo6m75VvhLl0wUTjN/PFgx5vTTKinB1AmOJrP3qTWDFrq0TtiGrr8MA31iolCXh8c+bjlX6ShyCpn964+bs8VVjeo22N/EAdo02NVAaiOznRSRtHWXX74g47HrWgqDXA77uGjD19Uet7eEr9Dxk8hMNz1Ptptth0A24eFSsMioWuJWwU5UiMRH2x9TVWAk6v2d2/UO9L3tOEteFVB2vI6uOWcmrN8GurgfbrgvMLGtAuhrQ2CuJlsfweFLKnaSTfO+fCu7PKvtlREjeXVu2gR6Nrcjl2OgGytj444XJEENPVDLnwdY4hoI0VrcQckYRJC+0tj+wuiyRiA9AYglMlyyBn/mODUFn3TDtuVk5ZuC+FgesLgow2Nm7h24x3+VazBZzOsWcTYacTlmJSy7/YZxlmOB46sNavuOpJ2spzO9xYR6S7fvbMdER74n9nb5WPgqkNwtwCIaN5BNUyii8yRBbkXIhXT8Y+APAPGnBnSpxHO0pBulJZp9Tvtdit0anjxsauIG56hsAnLNRgRt4RjFkAyK1mLIniNRi+ElCU4uZ46ZKHebbuDUkErSI1G+1hiEvpHxGdKxTWOH3+/J5va463d+9chJNPlYS9uqQsFaHFWN1tLRb+1zUaGTw6uvfRB04XXTY2JgJEOd0KE5PCcITfgdGtRtQWcNcIDlHYFFqoKGFoBS53rVmx9C3IXMXXUxrn/i7Dx0lKRslaYkozXjh+uLCqllBk93ctgzYNsbYXmUQpSG8KMk3FDKzRXlrpwj2CegYGQAQs4cC3YYRj2LbMPJ6aQS88RnzDhVoOuqGI0Xq0/v/z/Qpszl0GenTPev59OnM9f/Tp6R8evkeGf6Dc2ffbN/kqqcH99OYQJ8ym36bQFPsWM+nKVavL2192tV+ldu8S+ODlscO2PL1aut4E+hTZpDABCjN5EUpeX0p6lOmDTW7PsVnDKc+BUiR+vQvLn1qMXsC5nIyTcZaByunFz96J/jseeMVm3X+x3ATbAm+Ws+3JWimg/wBF+SCM9aqUJCXQcYaglGBUvUIRgUqYw3BqEBlrCEYFaiMNQSjApWxxpwNrLQ0uKaR84hJuGCCtLSHJpOkfRlK8suoRxA8HJQkmQf7LJlYc8mEyXRhApk84pLJkgdvVrn1mi3PPR76i9/nNHpht11xoj5dMHwHS7WLu1zHwzbi5APs2En/1XxDw4MlkS5Nxnp2DR/fxDW0lWGbcQbbh41cHTUCi9bdxPUV2E1qi8cMrapuKRO9gym4Hb05gpnXViGcSGsSLoQTifslDCcy9ePEvLXz+wbs2Zwe4nWvzVVT1+siDU8xFuJkhUYJC+aQ6N+ZVNdr4ItA/63rkq41PlQ0nx/93uSjxKFsbyi0RG+IScNipDkSA+m9XkV6Q+zGSS1x6QmpRaxZ7A0VT3R0V47z1Wsd6b/Ia8rV8cEj3u7vx4sal2eEiukZ6RTdbEtCAosS2W0C2uGQkDrkMZcOWZ5zs9+0u+8C8nJ25/084ha9vVyFMEU8pmLzgnGpDxeJOAHeoUduKI5XazGip70WS9GSBUhInJl0P4hXMcQtso+I0qhVqnDo2sKL+lVTjDnKlCzXHLXtlYhpIsHrUx/b3EedBFdGlAoSkMF+89FKLfndwVYEHofenriJIUeKIY5VJdlCJrJNA3Ls4i2aOM3bLlihiVHGy7FhtElhT1wOh1TR+tcrEdcj1Qn6VxnMYy9byBxt0godcRDDNLBdnVZJvFVF6q1QRlmjGBUQHw3ZHnSzvRK8CM9o9S7hm3oVyWZHKH9IQK1UqLwhBYFONDYRWg2miNP9jNdOFysQYqo+4ZqqFuO/M8mnTBTTZ85/EzjwQ9P4HPjwNEo9PLV4zJnmxHLPUZbzlvnM1KnkZ1yYW7SrjaBro1xtBF0b5Woj6NooV5spWMNdbSabmwlc7edcMqkUsTR5U9Jwn8yn77BO4nQ6hZojedZPcaEaTitTj8oSiBeHJmDxfnIdW6thOQBM1jre12LTtjB+wdCqfuBs9d4ED2iBI32GFY11l4mesXuR82VGNSQmKUVfRBKoiqNiFfHAXCG/+O6W8/adGRfivzD8qFbdZ7aYngPgQzyBnQNADZQGA3j4Jj4G8B6bzJIrVSEKQKtb/seOHfsspK5fTBcMRU2LpxaooCOClM3DJ952jhueBOYd65maPb6dC4OFi3wIgoWLGikN6bTmlU5tS5AO0EafhSQUNpLhrMKwtogmJl6q9g/3dgZ4HHHw/dmx6BssNY+evWwrI3mK2cLRjZSGcMrxCueZefrQ04UD5aMvHCowxyWcTpI4+JG4TPTImwnWnu5idYJiJCT5aYv/VPwb6BW17sSFceFregYvK3duSezf0+ndFipH6j2f3QiVNloawruykU94hWYiESiZicm6BAl2L5YgZOoeHQ/cWSA+IK54dTwUHfiXSj0KH4Q/esKhOEUKcQHdjubhrNk2/W7Ipnzq91dT4CYy2tHEoiohyMulIbkdvJJbbXbJwZtgfExQdlx1IgCjjI/hV4QHC/ya1a9vFXAgbeSKRvInXYwnvDf2jMud9CHg3uEoy63yxBUh6acWiTj8VCfrsRGH9r4OPWCbea9Fx7Gu9MN5byIkE6bBkpXYKHbrR65k1pYS2LY+US+sgzOQxWDqOEyrGS1OIB6Y6BhAJHAGxIdj8eROhNt5ZfIq870rO5GAPu7QG/wnQa3R+ipVWuKDUe4+Z647mO93IfapqAQDTyCZnE2cia7Ifa0fhQ1eK42/o0EevbVH7bszNx+WTK6dnr1+2316CYAt9VT2tNSNlLTjZbJjGLvjBcjdhMh5ofRIEdgPn9wkqLalVqSeCyNWJ2MajZKD9PhR1d6zHO+oAzdfcbg9P33HNOOXMAMrpo4wAVY5vFhtKFs/lIpIViS3XPCXoLNzPe36Z1uM9Pioi1JP6ecKuG1jWlVbamNA/Sr8f2V9t4d+h267/YJLjf2PxfWLWFyZdPRlwuIqhhylmwthUw9E8V+Ym0wUubk0WFwTegS0Od7ydNCe7DbqrAMBO0zYYMLEOtILIDQPIjQTte4h6eW4zWXC4rrvXYP9dpLmQRmOHVsvy91DZykr6y7XEJVYXlTAvLGYvYOwWj/Tsbgm3Rjz9FuVq3zN71MGtG3ah95rx1wsrlB0XryiczWP6MqcxbX9imc1+tjN8F14QBEzbHrXumbs0wIDr7iWQTbZSPPAtUyZsbjO2lzxSm0rR/mai/NuVsrpXsvMLK4QnFhecCI3lyGL6yT1hluLyjX0m5ibueGbqom/WkAHG4iQFy9CYE2TfttLEYffJpO0bvO5+3nJlj+d08+uft6e3joEr9tNUKuARWf7bLYcOHcoPiJRFt9Ptr8BiGvUSTGxYtgFGQ/VCGnfMuHAhJwl81SBCw8fcTp+83gNzrdlNzrRGzQQ36zmMtGwLQBfhTcMujDwnQi299W3GFtLWbP4tWAuEIEF8qufeTHsq5jALaG7fz3WbNTR35fRt069YXoAipiveKQkF4qpGI10oc4A9IZC9Bp5I2bnUWBxQrYIcqEqE8s3GovRYGj/MrFeh642w2545Z24kTtiU0V6KMXGB78RURRJXDd5cAh8/66837/FFnM7S7qZKcBRgq+sVEcro3jaWdkeGjTKNf5dyPqavz85PrbZdfpcpR7Anqu6kdIQRnVeYXyyDPdHJOTEwj0oXq0F5ksRBWOnLp7dwZYV7CziXMVtu0fFqjXRruJ23RNHarT4D2hvtdzjvKo2yZv9M7Xlr2ju7fOm2zX4ARHa0Sr2stEbKg1hPdrMJ6yLZt9mUBkygrzVWsWB7vgkzdBEnhU0y37Lp5xX5YKyO1R1XSU93MSYrbKxW4e2pCKH1d1nmOJIaCfr5bdFmJdKanIeb+uU++O/qucEhc6O6p9wqGajSubd9gIA3CkALiMAgKpFkCdKmTLuvjKnDuxt3/jKscCcKTbvm7zZv4xhysq2vh8C8G4zDwAZ13SO5ivR/698nGvKBhuabrgUkF/+18+Sm0GzyiwfJzqdLx/nA9uzNHE+zp/Wp36rN7eL7+Ytzzd57koeZgH5OEPS+U435ekWkFSQlZVVBvk4jm+b/fHcsWvw5n+m+0YNG37fIvJxOvNKp5klSKdM8nESxz732HBkbejKTR0GdPvbtrVF5ONU5RXOB/PsNCwoHyfv6uqcIe7PvKbVsK9a9CBrskXl4zzYwie882bfJlpQPs4T69D3E+2r+/ywsvaHExsrvTZzPs5BXsltM7vkSjUf52nggNiClOOBs2rm3k593b29ReTj4D4EZz4OUISkn/pa9B/IxznlH3ZY9frvkOlNRjqpI6cvNXM+zoN0vnyc/PSyycdpsawwwvW7wbIlF9vcPbKj/B6T5+Mw9+YmyDG5m86XY3ImvbTycXrat3ja71nXwP1O07tkV5K8Nnk+DlNHmACrfF6stpStH2rufJw3XGps5AFlG2VIhnf2/lDVX3cHPKeflPRMglWQfhpFQiy7VlTA8UUzH2ViAqwD053mjHYjCesUsE1mDPwEdGHzlIcpEx5Vkqw6enJ/k1lXfDnfj32Soz/Imn+VIoAKC9UvqkLMyi+sdNY9jVmnDrNFYC++2t7wL6OS085F5jhnbWGVCEwFBIZF0+i5cbESonzLJUrB1WUuurld+tVle865NP54YYLvWvclJ988XzxCr7psTY8jrnXmlZfuVTTZdqdBUF296rIJyZPFnWy6BsyQttueJ49U6VWXPfrLPrf1ovd+Ox9HB4593aJIryXHwDUtqoqd0oNmfix/O+TUE6VeSw6/T78uU44pCp19uXpGcM07w/VIpP7otEQz/1FF+az+4dtWeictB0MVyaGMOzPWhmTtkGT2SfFskRi6DwzZkkPd47ZMmfDykd+6cWcLmle1TgVDlcihxclpBZGNHaQHNCtdPwwM3QSG7Mgh3zqb0z3S3vumTp31+7Y/F4eCIXtyqKG27lcvLmkk06+Xr7UrqCNsa1GZHOpc55xVjbMa+Y4aPRJq3Z9XEwxVIYd6/uhbNCjhiCynz9J/N3/uOR0MOVDfy/nsMv+AP0PSj5drVvNR7fZgyJEcSvnTZaNsQh1Jzq1F7+/P330EDFUlh86uGP+5SvZ03+lVFJE1+nlOBUPVyKGql7uNxeaVCz2we1iStvKRO2CoOjn0/Pl9hwcbbL3ndyiq/WJ1o49gqAY5FBIYm/bd1sSQtRfiHsw9l/8bGKpJDnm1kIXeb7tUkvnttx2th0X+AYZqkUOPq92b27763IAtf58LPv+2zmcwVJscqn5m0qPZD38JXdDn+vfK/KDyYKgOObRoc9eC3C6t5Wtr/VRuUBWrNWCoLjnk/v3s9UMPf/af+TxH2vnj2Y1gyIkc6vfN03baJu19F8++9vHHfbWglOuRQ1PCHdpV31HTP2PAUpdzdtp/wFB9csh/oebo0ftr/KY+tZ12rcHxY2CoATkU2czRQf0qUJJ9KTe/tqguxLAhObTUobBH56lf+eW8mbtXFVMvBgw5k0MBaV2fLN3/Vej8ov3hyYO2zwdDjcih2zaOE2rGBkiWa8sNaJkfNwYMicmhU2cHL+5Z4W7wVslev51L06NZxZaNRRzFls2wi39tdT8VMvHbfef6HXg60wTFln9zqahaw3Izlxcck63cdnvMiQbj0ujBRFlKgkodjcgg4GJKbkHeocv5xNkVEuMUKhVQQiRxhYEpA0wFhXw1dpyTHDC03R3kC8gohPoV4f0WucpEv2UI430pzqgkXgT53VaNfjZIYzXca0ncwnEtxtataswpUek6uWkAoLcQoGiu/LPbGYKyATqEA4dJg8fuojHYmVudqMRTKMD7KVViMFN080QMPCixAm65otA1PhsTDp6UP5OumvCLomm3EVfoR6C6z2EfgRYPmbyjsgs+Y3jgysuwiPNqdrqeQAJcN3KhRReLSxur0IL9ywhMDBwQHfMa91npcZs/kkbK2wTseNysdr1eHmJGtJx8LCJaTo2YWnpZbuRk90FJr7MHPtlZJ6YCgWtMJfZQQWuMCSQSrLc3d9Wp8V22z76+SzdZb+2/zvg0IhOA9RsvWGCqk/bnnYjD/vyv+uCLqg+YHnqZVB/AuGna1kJITYmoPhgCO+1uLY3qA6vpky6O27VWsmuVPK+Py8afTWgsmRrISGMJyZlWQoTmcGn/6VvLpPrg4NIazb99WVs2pffm7r0+zU4xaxoGREXLiwqYNxZ6UlJ21Qdn9shGno+dGZR/7cOKx3P/yLKI6gMoOjmv6DqbR3RlXn2wuc+w17mTRssyJ9xbOH3pPAYFWplWH4jdSS2DTB/P8sC1TJlVH3wtUg7dM7mLfFLRrontm56gn6qXffUBBEfLC86QrWVYfbDQ8bl4mDQmaFc1x7GnQ2paW0D1AURIzosQWNOk3/aPiMNvO7ZCIf/YpY7f5E3OFR81Hbuf7o3iNJURPnLDAwdSOkss6QmDHeIw8CPwu0brU6kCZUvOV+h7ka7beMPqEBjxS/R7s71oakQAm9PQHJLNCcnS2CSnFOhkjz3o2ahGmyteM60qnG2hqNOJccgO70YcsuOXS/KUmPrPBFRNgyBACahJeLCNTBSYI+jsrC4OEDUvXKKVGjB9wTja2Hp69zhZ81VSYP6CRo/DeoTPoS9LH+pm9rIsHioJsLAxl7HJQwqkGQ71lzlJXy40AWAdeQEDM8osThRhM+DvtBdx/WGXdNryyNIelyWPVj0fetb5zOdmPvM165L+buT8V3W8GAcIg9082UYijXDp28o4B5ghWsnIqu1H9m8om/f3mtnaofdCTCBaB17R/pttOf7xPGGcjyVTFr/69uioqSlFsm3tWs+tEObWzmyUxZDaENdJkLI4gVVd74EvMdIw/iviMIzS83WuJ3fa6fXTgEF1Z/XeR2/yWxM2z9TC0CfMxsXg+TAmgOjQw1sdByAnWnjij4kufgy+OSzmN4wGk8Qgi8g8tiv5hVniQP6WoUEFMPlDtgPQH0gRrcJFrjJRu+3G1upJ5HqgwHADbMoLvQ11vNiF4uwD6BFFfPBfhE5LhNFo9SiMowKn/7/NF/7jlC6ZX+5DQZ/frlyj6xic/hjBCkleL1HHXPzh3tMtu7225lyrPMk5JcPYyASAORDCbC1FNLDu3BqH2diQcHM98euiW1Hq+EQsKgmfHpA1hoNossXFiHKdOgdvKcRu3L4xvAM9q6D4ueztL23Q1CrhoCsJ20AUbCnuOGykSnjPpRJOODR91bajOnjqy+dB7ue+kzE5whNUiihMHJKkUiF0AZfD7EbdFw/vg3NWGZ+sUCmjiUk+SqmNFavBNkVjuCZgntLzvCeKy1xv2FDD5yIT/fkTQNcedfgWBtDd8ZOxa782NGo446kWMnRCJQkRQwLQ+Q+/PpV6LJBkVKu6O8TBuSndfcYfxHaficslLWdmVoKRyxkeW16ByK1DuQy2wGUo/InTfTYQufo65DS0qQanFvrcOuPFiFurxCFTy6UMd38d9h09VZucIOgjHfqoqVcxRGsHL1qrfypTB4t6UdvI0QmYPg5N9XJ23IOAS4up3OHvJLr7+Q+GTm4MpmFkCcM/xiru2riBhIIFjwCb6tGEqJFSZhomYxaJsYncHuQqKJIg5CryxFeBoEBYXYK5GPoKuK2ipn40EorTdR0cvruqkSyYdtmn19EKnxgHE/BbIQ4m8MulAcUOXijAFCcN1QcRh6Fq9bFO3e3i8rLd0qL3mHPMJboRxucI10Ecl8vaMBhTJCZpiIMwYkcHwSX8VMPOupgZYpxvxXYN9AYN9ZOAJ5S1nVQVLHfUC7gDi4x2RytJ4bE4BAD5fafm/Pxd9Ss5PlkLG/ZIOTNuFnM/lMieVMTVkmwQ08cy0gbBxPFtEKpUCcI3etAah0rQXrEmc/Up48VyJEYnKxwuSs6dHJJzfsf2tWGDq5v1fEvkRgJhi3ISYVHoIp2T+JFr7WlfXenXOH9Q4OTJvazfj3m4nR6RwicyVKLswgX4NEc4o0iWI/0kVREH0M3DMfDFMHgqToWxo0hKR406TtDqZCZpcrw3O5KmGxKQQf42E6A8DxVShckIezIRnFIQIpiGiuCUgn+FEpMm5HZ1l/2w13eKqkG1ewr736hxKj92xtXFJzDFHu+Vkj7l8ge86GRqTirTqJhOwdKw+T29gueJf4l+pBzy2FJVzDwg85eZZP06MjL2ZyaKvZQrsGgH5xvQKmCJIHHx/v3ZzuEtA/y35u6odnCE31SGbwPvQ/g2+OWSkLEKb7v4x133An5OP3+zVfb4QSZA5jgvMmA1WEANm0i39HABlXSc7gRZiggBwY0HHswain9zpLxiFUNXfY51D9ylnto53386veQLZzxiz2P8qqlNABTHOl5xzDGPONhtagTwtlXGl4tCKx6rbDkeTVD99e6Vfbf4+qytNmT1NA9HrGJwkhby2Ok+ji4RpCWwUppcHAnupN446IWI5MI4L1gdpEX+JOKwyD8Plt8f+P3PgTOqDW7/Q+28GLqPEYEBAyogXlNfd8CZiN8JnRwy9GiYoWWWPKBeh+3yENcN7W4BqVUgbEUoE5sGTGz1TEHdLeoRlNrE94TeHH5ujr8Smv7vXWGtlm0P+y44O/OvRnfC/Yw5vzR2QwXj0hALLWpFp4AV3dXsCparZWpJWWXNIrRYgjhROQbD42GYIipWnJiEOxYwSkt8AFJAq48PLm8X9JfPT3Py37dUBNJ5oKzhY9kKF79aGuJpwSue6hYrnpKOP52Lt0FkSV7JKyfrkeekW6njgleuGRX6V/8BuTwnouX7urU1JlLBcGyYWzEjHRso2E/b+QT7aLu5BQtvwu2jkWG3ahFMU4DOf2W4jkI0v8kX3hB3Ui++Qx2S9vXAFx5pWj+LOEyrxVAdMsPypqGHLwWmwyE/8TEdhulie/C5lg05swjTNJAzHVETQN45iw9ylywKcisuyAWX/zroNFbpl/8iqnWpGAeiWpcKbyCqdcuLOKt1qfJfRLUuVf6LqNalyn+ZE4VVQAm1LXKKMYt5TVBAWY5LyE2Cjrhd/9nOd7N19NCLD6vShVyDSB31VqkT4eEjng7M3jLYcCypJr5KSOUcC7mPiQfgCQowa4EsajFs58AsYC7xFVngoH7J0CgxsOdh28BKuozaU1QFK6nqNkGZkPWJ3G28t4gaigbgAX7grjL791hiYN8tdf033fQcey+w4FtjMrdLNykyAWAl30Ye4hQxtc6Q1jKR+zbkqS4XVrV0BTb6WCFRitvr/+jptp+8c2r41ejcM72xCYtsJvUKeXN0U4pvunqG/3Tp6EMmQKkqL0ovtwo7d3ANo9YVvthwzKglBxMHqEpG7sTbyHNHlvm8GO6fOmjY1L5Pro01Zo4Z20vJlZxEyPRu6L513ibsULS1LqgOIYrS64AKzQxNN6Fz4IMifP78oZJ8Uiufub99nU4/JjVPDjwEqRkvSFW3CasSaO6jJL65LvGpeMrgaercCupez39bj7jXOjizhv/vH1avnkjPSaeey85J142UBjofOCsEIDoPdBUC5bkM4+PeIXJrj3+8F68/6bs2NKA/O62TbQmtOcBtTK8O0BVOjlILIiFgtuswNNPU0DQToJiewUl1UopIZ4Lhs0PCTJ1hSf9LjhRpp3ac4rd6eX8n+bmLf9LPx/HoGIdZpw2WpMWZKs7YvgIArEcQrDDUHPMC/vdFYbbOAQcLAyuNG6peBcuq5a/u67tPu81ffMyFbuQqycC9aKD0hsrYJYAwHeKFafs2Ycau5IRsZuWC2RKyoabB5whMyBazfEcPHBpSD1lz6SHvlic9uky5IU/zXftC28WJzsJcJRyLUySIiYAbIprP5Zq3JO6jcofxLicKcTw2Cl7CNMoo0kAapJaYrYJ43hCVd6k3LKCq02ZPISzA5qhOKtwtSFE54EnNRKogeB3kt3RutGbgQre/A6ZGHFJfGnJ1Jd1Fwh/AdpGIyyWtOWbXJGMTWyBNNoRnOWrN5UCa7N2CapOqEO/D1zZ+dvkZvdc9nBC0M/xRW99bY6wYMT78fkSMj7heEj4J34z5ffVX2T6zagSu2N34VpwJ8Lmymw8fMH3MEaK1xYPeyQQQ3UTMP8J45apEKjQxmJZPaF0PpbS8etgmOP1skmZVr++e0oVG3M8WGnnd1MoSSmUHr1RWW5RUig5QUhFkvhxxhZeARfMdU3WcufWerPwCabZ93uabB4cr6IIJxu9nC4a8XhplRbg6gbFE1n71JrBid3cL25DV12GAbyxUypLwOLb3xr9LfB757vunYGT1Vp886DXa3sQD2DXa1EBpIFK4mw+RLbspu16By65nLQh6PeDrrgFTX3/U2h6+8oouY+ITDc9T7abbYdANuHhUrDIqFriVsFOVIjER9sfU1VgJOr9ndv1DvS97ThLXhVQd7yarjlnJqzfBrs6XbdcFZpY1IF0NaOyVRMtjeDwp5U7SkV27c2149BOvec/qXapQJ/cOffJxOTa6gTI2/nhhMsTQE5XMebA1jqEgjdUthJxRBMkLre0PrC5LJOIDkFgC0yVL4Ge+Y0PQWTdMe25Wjhm4r8UBq4sCDHb29tUtZhuLP51iziZDTqesxCVOUuZZhgmOp6x38x1Pvd5FYV6RC/OQbN/fjomOeE/s7/S18lFgNXoP8mDYSD5BpYzCmwyxFSkX0vWDgT8AzJMW3KkSx9GeYpCeZPY55Xstdmt0+rihgRuYq54N4JyNCtzAM4rYbERqMWVPEKnF8JOEphYzx02VOsy3cWtIJGgRqd9qDUNeSPlE/euVVr9mp+C18p53CsOyZtDkYyVhrw4Ja3VYMVZHv+/Ltd8+xzYou2ZS74BvZz41NmYCxDkPitNTgvCE30EO8GxU1jAXSM4RWJQaaGghKOUvXL2j8cvPXvOmNBt32juNXs9qJWWjJC0RpSa3nuytYveP9z7nPfeH/+VzwwQoxfKiFJldyMwW5a2dItgnoGNkAEDMHgp0G0Y8im3DyOulEfDGZ8w7VKDpqBuOFKlPbf+f6VNmc+gy0qf79/Dp0wV7/qdPSflsTG42v72LWD7zRLfmauWT4SbQp8ym3ybQFHl7+DTFpj2lrU8fLpcp54yfLl/Qbsoop4KMGSbQp8wggQlQWsCL0oQ9pahPmTbU7PoUnzGc+hQgRerTSha/J2AuJ9NkrHWwcnrxo3eCz543XrFZ538MN8GWoNsevi2Bqw5yO5NlrFWhIC+DjDUEowKl6hGMClTGGoJRgcpYQzAqUBlrCEYFKmONORtYaWlwTSPnEZNwwQRpafYmk6R9GUryy6hHEDwclCSZB/ssmVhzyYTJdGECmVTmksmSB29WufWaLc89HvqL3+c0OjW0XXGiPl0wfAdLtYu7XMfDNuLkA+zYSf/VfEPDgyWRLk3GenYNH9/ENbSVQc4jk+3DRq6OGoFF627i+grsJrXFY4ZWVbeUiUQ/A4XW0ZsjmHk3C+FEWpNwIZxI3C9hOJGpHyfmrZ3fN2DP5vQQr3ttrpq6XhdpeIqxECcrNEpYMIdEP+DQhojKAx77TXEtbKm68b4zP/q9yUeJQ9neUGiJ3hCThsVIcyQG0vuQRXpD7MZJLXHpCalFrFnsDRVPdCRqv3Vf2utv7J4s88PYoQ+Oas7xosblGaFiekY6RTfbkpDAokR2m4B2OCSkDqnCpUOW59zsN+3uu4C8nN15P4+4RW8vVyFMEY+p2LxgXOrDRSJOgHfokRuK49VajOhpr8VStGQBEhJnJt0P4lUMcYvsI6I0apUqHLq28KJ+1RRjjjIlyzVHbXslYppI8PrUxzb3USfBlRGlggRksN98tFJLfnewFYHHobcnbmLIkWKIY1VJtpCJ7HYCOXbxFk2c5m0XrNDEKOPl2DDapLAnLodDqmj965WI65HqBP2rDOaxly1kjrY7Cx1xEMM0sF2dVkm8VUXqrVBGWaMYFRAfDdkedLO9ErwIz2j1LuGbehXJZkcof0hArVSovCEFgU40NhFaDaaI0/2M104XKxBiqjpYvP/OJJ8yUUyfOf9N4MAP38nnwPffSakHR4vHnGlOLPccZR1vmc8CnUqu+v/S1UbQtVGuNoKujXK1EXRtlKvNFKzhrjaTzc0ErnY1LplUiliavClpuE/m03dYJ3H6Szo/CnnWT3GhGk4rU4/KEogXhyZg8X5yHVurYTkATNY63tdi07YwfsHQqn7gbA3KhQe0wJE+w4rGustEb9m9yPkyoxoSk5SiLyIJVMVRsYp4YK6QXzzw08Mat870lqxeNdu9sduaJHoOgA/xBHYOADVQGgzg/XP5GMB9c82SK1UhCkCrW/7Hjh37LKSuX0wXDEVNi6cWqKAjgu6vttXpUOq76tJtv2YU9hjpx2ADjyAfgmDhokZKQzrteKXjbAnSAdros5CEwkYynFUY1hbRxMRL1T4hwT1r9+uLvts8x2UWfMqNpgtHRvIUs4WjGykN4djxCuetefrQ04UD5aMvHCowxyWcTpI4+JG4TPTImwnWnu5idYJiJCT5aYv/VPwb6BVVa86yXz/8ssd3/4b84+fafRhMb4Qaqfd8diNU2mhpCO92Dp/wfjMTiUDJTEzWJUiwe7EEIVP36HjgzgLxAXHFq+Oh6MC/VOpR+CD80RMOxSlSiAtIOXaZVnDR9omfZO6ZS66vEy8cZLSjiUVVQpCXS0NyebyS22R2ycGbYHxMUHZcdSIAo4yP4VeEY9p3m1l0uU/Ihrnj/mp0L6ai8YT3xp5xuZM+BNw7HGW5VZ64IiT91OpcfqqT9diIQ3tfhx6wzbzXouNYegMzB28iJBOmwZKV2Ch260euZNaWEti2PlEvrIMzkMVg6jhMqxktTiAemOgYQCRwBsSHY/HkToTbeWXyKvO9KzuRgD7u0Bv8J0Gt0foqVVrig1HuPmeuO5jvTyD2qagEA08gmYO5nImuyH2tH4UNXiuNv6NBHn2Hr/5ZIz0cHbJ47tKt65+dpaex2FJPZU9L3UhJO14mO4axO16A3AOInBdKjxSB/fD5XEG1LbUi9VwYsToZ02iUHKTHBbWby5u9nuq7Ia5chV/Kb9to/BJmYMXUESbA6iAvVtvK1g+lIpIVyS0X/CXo7FxPu/7ZFiM9Puqi1FP6uQJu25hW1ZbaGFC/Cv9fWd/tod+h227X4FJj/2Nx/SIWVyYdfZmwuIohR2leIWzqgSj+C3OTiQbmlQaL645DR0dPi+zkNemU383vJhcsNmGDCRPrSC+AUCpEaCZq3UPSy+/zyoTF9aqrW+SklACv3IbDV3+aOY5OzVPWXa4hKgm8qIB5YzF7B2G1fqZjcW2YtG/1QL/1wTM0qa2CJp8bZREsrlB0/ryi+8o8oitzFtd7jnebTBrbXzr7kM2qdTvCe5ixTwsMvOJaBtlkI80D1zJlxuL66UniwHER//gtvu3qdOjMpQNmZnGF4CTwgjMwrwxZXMv7Nk59Osg3dO2Cb9KqzY/PtYAONhAhf16EwJom/baaXH6bTNK6zefu5yVb/nROP7v6OT30a4/X7SaoVcCis302Ww6cOxQfkSiL7yfb3wDENeqkmFgx7IKMh2qEtG9Z6lDYo/PUr/xy3szdq4qpF8P5tuxGJ3qDBuKb1Vwmit8L8FV4w6ALA9+JYHtfb6+xtZQ1i18L5gIRWCC/+owddU85nnomnXrSNtPqUaVn9K1Tb5gegCLmKx4pyYViKkYjXagzAL3hEL1G3ojZeRRYnN57BblQlYnlG43FaDC0f/lpc4FVkIskaH3XxLQVf3ueYBRF4jciiiKJ6yYPDoHvL+X9/u57ze0s6WamAEcJvrJSHa2M4mlndTlCfGhjoVXwvsBpR1xyPAbS5yr1APZc1Y2UhjDq8QrDxjzCYDfnF3Bi4R4Ur9YC86WIgrFTF8/uYMsKdhZxruK23aNi1ZpoV3G77okjNVr8B7S3qli6dPCLznYhqd+F3ml09HIE3a7BD4jQjlaxl43eUGkI62Uen7D+NPs2g8qQEeSt1ioOdMcnaYYm8qyg7ILpXhWen/bLfLKuweFbbx2M2Sobu3VoSypyWN19himOhHayXqF7hXmppCbn8bYWY3WeH/dcKz2Qmx/Ws3P3q+bd9gIAOlIAXEYAAFWLIE+UMmXcfWXkF85lnh2bGrI7o8Ldo/fO9jZrfT8EQMQHQMZdnaNZ6/9ZPk5AWtcnS/d/FTq/aH948qDt88ssH0eVz5ePY51f2vk4i05fLDhR3S1gl6ffiNCAEY0sIB8nNp/vdDMy3wKSCrKyssogH2fN0qorInqG+++9sDJ4063uhy0iH8eLVzquliCdMsnHCR07ul1myvWAnQP/nnnw5de7LSIfpy6vcKwtQTgic+bjXDmU22iZKM9/RuHB20mh6b0tKh+naC+f8K6ZfZtoQfk4Pm/n/r1/ZW+v7KF9fQuvzVxs5nyco7yS22V2yZVqPk7EtKe3lX2WeS1pXm/voKr9P1lEPg7uQ3Dm4wBFSPqptf8L+Ti3bRwn1IwNkCzXlhvQMj9ujJnzcYry+fJxjrBd2lLJx2kzoKh310mZ8pUD82qMcyo32uT5OMy9uQlyTJ7k8+WYXM4vrXycGWvPXMv5Y7Fk3tkN3+77e/4hk+fjMHWECbA6wotVVtm6OubOx6nDpcZGHlC2UYZkeGfvD1X9dXfAc/pJSc8kWAXpp1EkxLJrRQUcXzTzUSYmwDow3WnOaDeSsE4B22TGwE9AzrxTZwcv7lnhbvBWyV6/nUvToznfj32Soz/Imn+VIoAKC9UvqkLMyi+sdNY9jVmnDjyBRbvArKztDf8yKjntXGSOC3YVVonAVEBgWDSNnhsXKyHKulyibL8rRNq1TT///ZkTg2cWZV5iaHkgPo1aRfSmF8BG2lGWAuZXFHEESoYjyUcRp1B4PtSIeLUWZ6cTRDe03i1r4WX3GV4/iiOnhh2Ze4XvjRF2iTYuoEv+kJACkeiIFJHTNMQVjMoLSiGnKfLCJuc761TeezM+xQ8VhceYMKfJxKQ5BwFCXhAhSJrDou2D/ipAyFg+w8be9DlEbqhD4Pxyg2cT7kgUG4wb+65Oy2fSXY+z/3ywuFYneriTY6JQ103tRordSKDEKCMDGQnSggtYAW+BQNXrg8HwD44Qfd2hEfpUZ8O+wrY3A+bLDsyT2Uy/TA/XkQ9jh+uogdLASBTMhxFzMpX7Aozw8y0ylQXgVOIsmvzN4syVV33Slz2bUDl4ywf6WoQPYyNEXi4NfA4G8eEjDiogFb8Tl+Jv9bFO3e3i8rLd0qL3mHMMXfHby2ELaq58Wq59SMNgTJGYpCHyWYkDGEK7w4bWhil35/Xdj5+Ii/XdtX77H6tEHbw534ptufUGDc3BgGq9J8DxkBTRAgayqk8MY6l1gTkYlaSQpgkCgPy+sxpHHpi+8ETIxsR9AesS2/gwuVAS2UlRxNWS9DtT6RmbcAH1O4QqVYJoLgJT/ABUnPodmZxSzEIMG/XhDanlSIz2TZqS9n6cT+CM3Ac7ljSL3SGEe7isj/MmupI4wbQpFk7z3HCcyKVZz4pYSqylad32tcTh1zP+6zt2vGKV2fRweblyKDW29sGqBoPb9pZn2sxVfnpgR9+Vk0d/RNKJ4etW7IcRnhqR/kI0ZRHsl6Vb9Wx2VB7hPfXs8sEVu9kf434zdhRUf1SAxyEOAEjnoxYvLgd/QT6ZWOeTxaDhQFMfdPpzzOGxbrKNu183cCkS1bBcF+0mAEwUQLpo7EbqrXHABMXynHwY80VHb4gmQ650auNR+XVJxhj/gScX/RLDOHYu2wwqLzcSjaqohQptKECDXKj1uWzol3Vc44tqG95xrYLETdqmrUEr027qusLKVZ4HburpXrVvYJP6pdhVDdKxDulVQNCxIlvziiILjG7Ny+yqxmzNW1pd1/jUh8Fd187/NTnkwxhZ8Jz57qebVXy6jaPL2hd15mWaShNQoXpBaSJ7zh4Fo2mRBQI68xqMkcjDZtm3b/wDp07J+D2+p7QzB0Zf1JeXqYZMgBGY0zwYDYkoENKX1/BOdJtvLXMa/0fnkNzTE2KD25z5waw9eUXu5FxB9uR9546jRCrUBlwKtfbtH32qdz3tvbbDnQOZR0f5IKwpOqRYjThvQMApsiOGaG1/yOMJVjsgdGY/8YEw5BilVsE4G5y/QDwxWDxOvIKbPHRi9e321jUqXd8bPGfNouEuof4dyyDVTndSx2TlayYTefoWwPAMtHikKBp+kSispGUuhi/p6n3c9XDtE+XnBB+Y8abxY9vqK76gq7exqA8BqHfOYqLu/F9GfVqHM+Lpube9FwRfxCIlGx+YCfW7okIG6o3+y6g/LHqQ97r1Kq9F/dPr2X480t9cqLdioi7+L6P+uJdm04ZhbtLtZ4KiTy06m2Am1HeFMVFv/F9G/a3D10293130WfZh9emK4+unmAn1mmOYqDf5L6P+rkrW9SIszHf9rzMK4jYXjTAT6jfnMVFv+l9GfcYL1xcXVs0KmuzmtmXAtjEyM6EevYGJerP/MupMMiwzoa7KZqLe/Au3TvAlyhz56sUxfpIQHr1Leu/UYcOgdn299q39+478mKsa8e6IXRJ+2eSotwYaRqPz1/8P
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAtFJREFUSEu1lF1ojmEYx6/eliRHDiRJEpq1RLSDpUhrSg4IJ0os5Wus5ECxA7UMpRUnSEmjmLWEOZKcKGlpaQc7WNKOlvQerLWDtdb8/vd93c/79bzvmV/vv/f+X89139f9PPeHlXPFbJc3G7HO/zMumm33Zn0umW3pMVvuNtsmT7Fb6GN4WGIVWkRdwcFZszXkLaE7HsrnstkRFTgXB5HvkGd2O0JCiXtoAe0MDsjrUhH6nPdQLcz8sAY8bbbSQ+o4iYbdJgroK5rwdoACfWghZ0IRPaieMR2O+8yaPZRoRcuoM7hIgdxxNOq+BiUUGeyGe1HwtxhyX85P9CA2I/Q/hRZZz9UeqoSBnpKgV8+g4Bl1umC21kOJF+hzbEbo36qvoH8PVULlvUpgwBYPmRad2CyFrnoo8QRVFGAd96s/K73JQzXok8xQoM99gNgQsU9uEyPoQ2xGyBlAv93mQ8Jj9MNtAH8zp+M4ehib8TwwkTnetNdD+eibkzjvNkCshwJ/3AptZZ2Fk8EBz5+jv3UXOEFSd9Vg+kT9aNKt6EDaphtk0hlCR+UbwuAj6IvbAB2/oUG34j6ais2wvad5/tJ9ffaZNZFYsWN0NzHAkmbpITGGnqlBbjN9dIftkW8IA3UqmdO82UOKadF/0UzXQhPShRe+f9qaOeekFgZ6jTS7gO+MeWL8MjYiff92GR60qACLm11+ufiB0mBMKqItR2y2ame0IRUIh+mE2Qrvx4s3gKRDmkn5q9JpGg24TRxAKlCe9wZlb54Ls71LgWwr4ttUMOf61WKqQLZO6Yrh1Q96qBZm8Aq9dasC1+g047YczVwF9CYZ9B1FU3UPmhfQ/RJQMfTObTUqfD02I8x+PflFJvVe6+LhEjy8jdLhkR9Dj9xWo0P1PTZLkN9OgTn+J/jf7eGIH5h+t1r0YWZ1zG01+jzF2KyEflvRIH2ze+o/YvYPvDLEdqaZG+8AAAAASUVORK5CYII=
- fb4a3cd7-41d4-44c5-9aaf-914e96b16bad
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- true
- 10
- 5d2c2b15-5cda-4ff4-b8a3-405e7b306012
- 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f
- 70102562-363e-430a-afa5-f663fb2d93c6
- 867df14b-b84e-4903-880e-679477d08b40
- 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb
- a04899d6-6a10-48b7-b519-0ca4e8b4be37
- bc983a9a-51bc-45e0-b2f3-5dd524ebe645
- ca63a059-0a01-4560-a8ca-8869c5f2d87e
- d057826f-a473-488a-8c43-ba941c74c870
- dac19e22-ff36-4a6a-bfd0-61013cc4fee0
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- 20d03587-b988-43e2-924d-d6655441a5e8
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- 130433e2-dd09-4dbb-8e9f-946a284f4836
-
925
-3207
371
204
-
1282
-3105
- 10
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Second item for multiplication
- 867df14b-b84e-4903-880e-679477d08b40
- B
- SEWENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- 1
-
927
-3205
343
20
-
1098.5
-3195
- Second item for multiplication
- ca63a059-0a01-4560-a8ca-8869c5f2d87e
- B
- SIXTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- 1
-
927
-3185
343
20
-
1098.5
-3175
- Second item for multiplication
- a04899d6-6a10-48b7-b519-0ca4e8b4be37
- B
- FIFTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- 1
-
927
-3165
343
20
-
1098.5
-3155
- Second item for multiplication
- 5d2c2b15-5cda-4ff4-b8a3-405e7b306012
- B
- FOURTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- c6aecd68-308a-4a6a-b29f-68933f542f84
- 1
-
927
-3145
343
20
-
1098.5
-3135
- Second item for multiplication
- 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f
- B
- THIRD DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- 1
-
927
-3125
343
20
-
1098.5
-3115
- Second item for multiplication
- d057826f-a473-488a-8c43-ba941c74c870
- B
- SECOND DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- 1
-
927
-3105
343
20
-
1098.5
-3095
- Second item for multiplication
- bc983a9a-51bc-45e0-b2f3-5dd524ebe645
- B
- FIRST DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- 1
-
927
-3085
343
20
-
1098.5
-3075
- Second item for multiplication
- 70102562-363e-430a-afa5-f663fb2d93c6
- B
- CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 21840820-7b03-45cf-914e-8d05118a8772
- 1
-
927
-3065
343
20
-
1098.5
-3055
- Contains a collection of generic curves
- 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb
- Curve
- SEGMENT NUMBER
- true
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- 1
-
927
-3045
343
20
-
1098.5
-3035
- Contains a collection of generic curves
- true
- dac19e22-ff36-4a6a-bfd0-61013cc4fee0
- Curve
- CURWE
- true
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- 1
-
927
-3025
343
20
-
1098.5
-3015
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 21840820-7b03-45cf-914e-8d05118a8772
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- c6aecd68-308a-4a6a-b29f-68933f542f84
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- fb4a3cd7-41d4-44c5-9aaf-914e96b16bad
- 10
- a65c84f5-46fc-4b72-8e74-2acff1ca258b
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 44b95cea-3f46-4b6b-b282-cdac19364d61
- 2
- Curve
- Curve
- false
- 329990e8-083a-43f7-baaa-90fed18836f2
- 1
-
97
-3006
50
24
-
130.0588
-2994.617
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 71bb1397-567c-4d75-8665-b4e3269ab3e7
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.190000000
-
-102
-3034
250
20
-
-101.0458
-3033.536
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21aeed4b-3362-447a-b26d-c1b13691a4d9
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.400000000
-
-102
-3074
250
20
-
-101.0458
-3073.099
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8d5c2ca0-245f-4e3f-af2c-234a7c61b647
- Digit Scroller
-
- false
- 0
- 12
-
- 4
- 0.02000000
-
-102
-3113
250
20
-
-101.0458
-3112.868
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b7d3231e-4e24-4334-aeb6-4329747a1277
- Digit Scroller
-
- false
- 0
- 12
-
- 4
- 0.00000000
-
-102
-3153
250
20
-
-101.0458
-3152.757
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 4a308d7b-b922-454e-862c-36cb6bf9879c
- Digit Scroller
-
- false
- 0
- 12
-
- 5
- 0.0000000
-
-102
-3194
250
20
-
-101.0458
-3193.056
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3a2cac49-3804-45c3-a1f1-9ae387f633dc
- Digit Scroller
-
- false
- 0
- 12
-
- 5
- 0.0000000
-
-102
-3234
250
20
-
-101.0458
-3233.61
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8f4c10af-71d4-4573-9fd9-fd55b1c360a8
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.000000
-
-102
-3273
250
20
-
-101.0458
-3272.636
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- acd1b930-6ee9-4f99-a19b-6cb48f642842
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.000000
-
-102
-3313
250
20
-
-101.0458
-3312.745
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- dcd58bba-6ec5-4665-9f5e-9748abeb09fe
- Digit Scroller
-
- false
- 0
- 12
-
- 7
- 0.00000
-
-102
-3353
250
20
-
-101.0458
-3352.806
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.00000000000
-
-102
-3054
250
20
-
-101.0458
-3053.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 1.00000000000
-
-102
-3094
250
20
-
-101.0458
-3093.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- aacf07bb-5a48-481d-b1bd-7337be133f9e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 2.00000000000
-
-102
-3134
250
20
-
-101.0458
-3133.28
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b2df309f-5daa-4345-833e-d910c82a19a1
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 3.00000000000
-
-102
-3174
250
20
-
-101.0458
-3173.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 12d062ca-3afb-41be-a33a-cf0b30d40747
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 4.00000000000
-
-102
-3214
250
20
-
-101.0458
-3213.058
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e3ee9ed7-1080-4a98-9406-a1760d620df4
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 5.00000000000
-
-102
-3254
250
20
-
-101.0458
-3253.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3aed1e90-8f45-4b3e-8f50-bd809fd87c29
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 6.00000000000
-
-102
-3293
250
20
-
-101.0458
-3292.686
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- a8eb7470-ff2a-44f8-8106-541d81b0944c
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 7.00000000000
-
-102
-3334
250
20
-
-101.0458
-3333.029
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3f1d8e98-725f-4789-856a-9ff9dd88ba16
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 8.00000000000
-
-102
-3373
250
20
-
-101.0458
-3372.878
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
-
7J0JIFTr+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpQVlCdupGum1alHbt0r7r3pbfOeOMzpyZc+I6Y073d/3/t1/NO3Oc+T7v+7zv+7zP5zlyRp6Ovh4sjs8P4EeKRCJJA//18HL3dWFzlvixuN5sTw7YZA28DDaDP7LgW/ifo7OYTiwu+BZpqFmB32RqBL4sD7w04dGL+DWhGebxXzhNLkYrPstac1l+bNYKsF0BaJexdQWu4tQTetmC5e1qF+DFAps7Q7+4O9Rm6cn1YLqDLUOBV1NSUn7wP2XLcmc5+rCc+G1sNvuHshHLmc1h+wDfwprr6cXi+rBZ3vzLgv91MWL68H6PHPCPY/c9wmNCbsl1NWJ5O3LZXj7QlwdvkdTFkunB4v/rZWd7uome3oO8nY27w4A/H8RlAn/ej8u+H5fL+wvvn7mp4J8xm3l/Rt+PiW15Z028Jfj3bUHgFXaAH3mQtL/l7/e3b7u/PbblbffjDrdcrfltzRdpjDsGvr5zvcCv5n8WuiWo9bDg7e36+XvDE3hvjsT6e0JaywWhP6FXMD/F+zv0jXi/EXYDh1vuDbpP/m3/fA+vtfk7Qr+U990hVXlXgPThf1ZYyWaFIbWbfxHfEJBdoKsJmA+Sl2dZPT0Tur28DdDDwKHgzR8m4E93/quGnr7NA6gzfwgAnc0N6IxQ/+kEvSxjx+S6sHjvHAj8c5cWiTRdDehZ8z09PfgjSGn++ZnSc4DuLPCr5MFXhH6NvI2jF4MZ4OnrA3+vggnX09dL6M3dTOhUBtuBy+RCQ0AKGlnSAm8FX5Ftfl8A756hjytSvb1ZHg7uATRfd3f4UKBa+zo7s7jObG/XEeQ5zR5j+lg9ffD/RpANfd19fLms6RyWrw+X6T6CbO3r4M52NGcF2HkuY3Gmc4Cr9eRfes5PfwNeWRa6igzV18fVk8t/ubsF29GVyXInW3MDPLmdTJ34XialYZf6ktFzGJkyW9jfGxRWCoxYhZ+3KYvye5R+OgsrB9B8LTJJA390bX5NQCzwdZnm10GNOkH6dTGZ/dP3jd5vU7kg8zDt0P6eZ0+u/bhD4K6kebaSN/Tk+DDZnGY/qg1dRcbAkwu5Vr5hZAw93T19uXwPB/6vKF81kEp2Aa9L9nQmm3CZ3t6unl6A7yN7Nn+rTqZGvN4D/Pd9yZHkozMaLUIOpscr2/oaA01SUBM3V8khuH+l+QHtK04a9R9fAU2doKb+x5Yk1c9i0bMis9dl9JxmDjR1hppke6vlOysqWpac/VuB4xVkADR1gZpmXGuw7JuezEi9fj2k+GbnRqBJGmoKNzAKl481oW/f3bBtjV/YdqBJhn+HLr1flTGvW224G+d3ikJvAppkoab8xytOVspUWYY4PKgK+R7ZBWiSg5rSPRgHvyjFWBTU6z5TyEujAk3yUNPLIR/OTl8zy3iz8bWzbAWX5UCTAtSkxRocpzw3jFYQsVSWpJu1DGjqCjX59ZA7UxCjx1h/e04GXa+xBGjqBjXt3vzwplf3y8axdpPZwRpTIoGm7lCTekRolzG6t6wO1r9ec2N67A2gqQfU9CLQ5fPStFT6cZl6I1eZGCmgqSfUxDY7SXa2fE7Zun/C9+cqlNdAkyLU1EVaRUdpuB8j69Nj0yMhX6cATUpQ03HnUaf8aTPo+2b3cFkrrfABaOoFNcV+X/DS1J9pnnNyR2OvKfesgKbeUNNyjbi7Jw1OMjZtHbI2PWZ5Z6BJmX/BnQOuX0+aRg2lzley3uUyFWhSgZq2KHQ/Q8o5YnmcnbA2rqyxDGhShZpG7B8c3meFrfEB//vU+9cT/wKa+kBNtzJjrmidljHLGtZtU7bFYGmgSQ1qWjxE2aKetMIk1LJSe8w4p6NAU1+oie7tprGs5yODmB9SDkn9S/WApn5QEyl9s6P3fF9a2SfLU3PHXNIEmvpDTZcTcpa/mLPSOJIZomNtKFMONKnzb35fjxxmigZl46X5ows8R8QATQOgptuDbfqEXw6hH3tnnqN3qRw0ykCo6fSJ+M8GPXrQ8s+OtpmXVb4BaBoENf35sjz629+ypml2us+GBef0B5rIUBP1eeipJV5ZFpur+1ksLm8IkzM1WiLgQQaDntmU4+3D5DiyTHzZLc5MSV/l0z6j72YpY7e+jH51q16E25CzZDsug79MUqD6+HDZDr4+zR4ect18FyWFm4sa1IEuqrTP0iMpC0Iti85+CrXRCbCFuSjaAd1y2VcvrfJedNZuYH2pgrmoo+waebPZ/U02PLnTcw3F/APMRaVneE88aW5KC+4jzaBVT1aGuSjjtRXJlNAms82LkjgGz/N1YS7q0kJZ9eLlewzzpqp+HDNPWgPmosrnelxd8NHXNHh0X39akOYpmIvyD6lctXn4BErKyLJUOY3ZwTAXxT6wtoQ17rJpajRp8ky9iiSYi1L7MZp0wUXaJEKp79H4SZQSmIuydjI/+CLAnZJ+XCskYmzXIzAXZTdMV/3Kk1KLBDkPTsjWSzYwFzU15/3gyddqLZNLV2vUjBlyBOaiNALchofeizKLq9lZZZcyZCHMRZ0M/yP2agTXMmLNiZsH1t5YCHNRjF2yav79WFaHT7JuVH5SmwZzUQ9TJ7wd8mQgNYW7y/6lbPlKmIuy3PhusGlssWlhjMVchTOqn2AuKrHo24PDO1MN8j1kNiekvdODuaixl1mM6bPkTYLyU0M1V/fbDXNR3Btxh4p6TbZK/XDi73kjjzyCuaj56zn5IyISLeMNHBJyfryThbkoIy9Nm3wFW7PYC3UNmywna8NcFLXpG0dtro7x7muRT/S5qkOExqsa2ngdUfJgTv7ijUaZlXZ7v02trcFhvHbCbbxqdeB4FbFu4I9XEesG/ngVsW7gj1cR6wb+eF11w733812mRgVB5Xb7z2hd/W9J8d+SohVLCuSsDFtSBBl2LkjX8KSmXzFWv3QiRRG2pFgy/0v9IupQ46P2UxiBAfulYEuKEVrj1E5bqNGSWScXelyllsCWFFfmTGCT0/cbH06ITD30JWMCbEmx5BhDmr7pqeF6Hd3yKUrTLws5m0Fozga5bMfB2XTGzdmodqCzEeFR+M5GhEfhOxsRHoXvbER4FL6zEeFR+M5GLkBN81VhrmX4WY/03bWPH8CcTXpTRsyiwi+MaAPqx8lr1obAnI0IP8R3NiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZJN05PMXt/mdaxA7Hwc/dVn6FORvk8BLqvD3ROi9ygsCh83ZB67x6Tx0Gf+U2mW+fd7Vu1KE0ZYHf1c2I7cd2YpENfbl+LME+DBoWNJOo3qkDfYxJdgQ/SGZzfDzJrOW+THeyO4vj4uNK9ma5gPFPbxk628mJxWkJtoiUA9mF0W9RSBWBVoRCLTEnA8AoTryXNMB/1x+vJNWlVpJInwxIpEADaWu2n6cPf01P0s8HWvdXdvVicpkeS9gcL19eYEMW0laUHD15v50MaODEuxuRX/LGhr3FixIG0NIKJ9bXzg29Lmhz0d8OetmK99uaQ768EJeMLeBCHFl8F+BhHeI8uvtG8+011jenft0U3bW5WSio1Up9agB9qkF9yIA+yVSkPkCrf6qAPlKQPp1Q9Oll6evhADov55Z+IVKivd1oX4NnDjfdFW/tPvdW7ViERODXESER7+VfSYScQHGQSBtTIqAL9bAGg2zePsD3NWL6MFvGAElUwFHGgAvI4UqCDWPhN3WxZvq48r9551X6a7qY+rA8SKSfBxMyHJ7U/A+B74NbCry0DIal+th6ubN9WqxEZvqQl7E5y0Sbq/Tr6/IRA84zMgtXfCpROqAvaC5z8HPC5mp+Wchcouwhwulh2SN0P5Y9JknGHrIOnp7uLGaLAyR1a7aGp68PwrHIUB0dWd7e8MuL9DWgwwNDt2QvTzbaQPoY9K33a8ullglbY9h0b9rfApaRseZ9UMg0/Ndxt00e5E4WirLNh1yeOxGQRartsgyxY3JcAMOS/YC50JPL67lOrVCqwVThUpfPW02CR5tnrecc+kNAKTnoosJa/WwRh1ramGoBnkVArU5tV0vDGvw8ywfwyX5Md19Wq+Va9uR+U8ONKfTseZnrr2rdHos4X+BfVVgweJs4JOMNflTJgMEPLZOkSSjLpDOJTMa3yX1MNhwYKNuosapMsCMwgFUR2daIIbxEkkaR2MCQy2L6gEskd/CzkEclO4HnKywnskMAGVCX69Ms9giyD9R9mRwnaAmlt6ZVayfkGl/0fQt3YH5LKzUOLKgk6e8DNNYwFLFmCgU01t8rtGbCmmkUeTcA00Dkt0v76ndvgGWYSfL5k8dry5NzBacYW/DTwlNM88t49zIvQAEyqMADUb0sA1g11uyVyBSjYOgJ7DLZHOgUfywJ/Qe5aMMykBrPQPx+qe3E5jaf5uqINJTXo6r4Hqy+9DS5l5oJz3r9JWAoeSP+h4WMBWsSh8EC92IZTF8yBpNpnqMEjfVmJpaxfrVu68ozVrPjEGmfLT00n3/OeWdQXJ+jMXrqciPBFQGD90HhFQH0ujgsU5+CZZnoFEmvnvmH/qBlhNZsMiT0ubUbA+bvRdoCuV0TsEUX8ONClmh+FW87aOdCLi2LChgF6dRrjvFGCDRx8nvfv2biREbAxDhxFqRjTZwFaSKDDe2bOJ/UubNWDZppsqXC/MtNQ1lKeyZOxFYaublo51YadAaH0rGcgX36/++8eskg5/3bCSbmx267+DhmzN9HkHlVDtNgQI8mzLzK//k5vyLnVazB9st5dayBT6LcskzLvZTArORXz0PaN68iRprqnX73fgRuo8XmU/wSbm+dhsNIc03DMpyahAzXIdPuVKnbMx7bORpkXYmQUpUuNZfotMvzeKjTLjCAoGmX3zmFpl3L47QLZ0inDAPn953KbjRTEvg2PSx83X3YXu5sRyZ468KTL1p/728B2IrlAXzKkelO9hC4SqtmVeQJEdZtCcmNaG+lnIrHAcEOAnJGAt1aHyknHejWcgcru7fEH/i9GpSBFyI1BR2BgC15XoH3sqkTfyzOc6reLFUub1T0qo9Fd93eNfx2KZT2rla8bis0GuSaX0e/cPP98G6XRMI+dxhAY3O9fchsYDiRnT25CHuJtE/NQHnNCd0GWsR22xz7ZdECFwH7SFGFTAK8hOz+UggvhTxya6eXIgHmPASaU58qwktdBdcDBythIkn9QqSBtixHT2Bx2BaVBul9pNhd7G60cd+9KKsLRXKCKhkIq2TwS5Wicw7GB6puYcRcowQ+Hn5zCw4qyWGqVHCgEuqDLX0Jy3+q2bC8AWHAM5pWCIScmQSnveZLCU970Ot4+9OGPKjHNFHBAwCEFu55PKUgfyqH5k93NHzcNXJ2JKPwT6sTJj+ShwhGNo39vbgsb28hX4q10FM1BmOrvK0Mh8xquQDsWvx3KtGsbCyodtpDVulPsVkzZISVTqt8LfLwHO2WhYOxP9taG2IFYykxgMQTgF1MPbK71QMSK8aI8LH8Q2kRPlZKhI+N/xZYlBJjb5p/8LAl5bHurY7wob1/akH2Y3LZTAd30ee3ah9KpM6NpNKT3/Quu39qXaWg2nOgj5KthJ2DVUe70ArAWl4xkHOoQFprewHPWm1xDso/ncPPjixSpbnpCRdotz+YpJ7su5U2wjehVY5Bioy7T1h6DJKggiJCAvoxngSQT5BH8wkJBfXzQh41mRYV5BVlL7vPENxEWzM5LHdBd8C/kigNtalkL/ATvDnI0dfbx9ODzPH0Ac9egNnJh+XvA53FiNQVmQ0j4laEM0ZEqerI9XR3twE9O99/Nf+8mYnok0hLovVJudneLK4dcPv8X6tp5OkLjgRHYAZZBiZFsJzYPtB3B2ZicGfxIPAAwo58cg5pR3phJUk7AbDjHENSYIihggWT68LmMFjOAp2ia/PLNmwXV0E6qPl1O08v+KuCnSHZuLCyCzmhsidPREFETpZ/V6KStrjMFaYcJ7YjDCWSB18Etzuwl3hrWjCU9dOZ23qxHNlMd0NPp5+fBfZ+PlwW06Pl313mcplePx1Gc1dVQOuqZBeN/NCoMINtf2Qwdn4pXCXYP2xY7swAwa4qRxJ5YojWe3tTySvYXBaZC14JykIT2VGRuVkibqRV4x/RG5H9v50eMh5YIC1NhPIFApHuoQmYz8iJfPfQlfCaI6cPnDRH5r7ioLlcNJbm1Vv4mndD07zNqZhd+Zp3BEomnM3I3x6KyGbkp2KKyGbkp2IiDSuUYQgusER2CWSyIw4Zht3RbLK8nK3LtkwzPF5m5f700YLXAr+r6yxfcBoAhPNyFZ4s25CzMNSI7e0FDgQm2ZvFW4oEjOQnLwD/D9gI+A0itUBmd6Len5AiAo1Cw0Xe1pPrYwXvVSIG0T9c2rVcDTkfgku7ZGAQqRqC/wkOolqjgsokTnJldz4HDsxPLH+ByzWbsgeaKUtZB9I4384yokZUHtPn9lokGG4GsxGZIMsqHFCSQbHa1JZNkI8ri5ctyrsAaD5+8ijTBzQpOCU6s1lOZC/+JkKvVZsgJCeAcsfCAfKWptbuMoEdd5YHoPxforJGwT1o1rI2ZY0qtWSNsiCNRH7BkdlrJ+46e8nssMUsk5Xzxp3BMW8USUu008HXAQpFgwrRAYXeIB08GKZLdheZN4qmkObPNCVgd9bcW5w8PYCO90vVSHbfvKf+rcjYPEI16erLWhXBbtFyXeFu8bPpV+p17REXW5anYxalpXJjo+sbHRzUA3oQhnoVbpVtComr8BL6fkoHDLRVPmtEyhUnN6nqWM44w/WL9VZ2jrhxFrG9AK8j3MmaX8Z75xaaB/WiaaJOKc7lVpLeuAunC2Lp0KdlqEPZgVhKDA/vbEzTVaPFr7s9Y+9Rr+y2+xOxKGLtjqUI0G+EUgJbqYgjm+vojtk3vDzMjlcbvaWWl+sYzDc2XUAQRRSXYSni5cZfSoIQxu8KRiBJtw4AIwJdscCIQGf8wYiPK0s2StncYGzcHfN190JKDXEnODDLfKkrVpZ5hYtYwIiiVPOl3Z8r0UMfW5xYlbF4K45gBJLAw0EisguWREAX+reDEYGhO90dpL5bJr0daUPp8ucFCYMR9Swse1BY/0dgxLprzy19xtOoqfF7FDUmbvgqcTCC505Q89YBdyIpMMKmbrjbF/UAy4LJnCdpz+2uEAKM4HkWVLUAzyIxMAK5GSAMGMEb/KiSAYMfWiYpklCWSXtW7ah91bDM8NARnW8XLo6pFTE9i47riNJ3GPROMGDj6Onu3pyiBs5/QKdhcdmOzeum1q2OkLO7rAXTy4vNceErBX4dHBcTSIy9nTMlGVxMWFeCKTPCJ1TnC/IqveKt+MZRQjOOg3awRkKXMkqe/VC1tLM3VAW+bk8jMPPB24fr6+hDpnIdW5+DO9WGBXwFll9z1MaB6c0ie7kzOawRZC7Tie3bfGQFDHT3lv04GM/hkJlcx9ZFbZDFGDDvW8hgyDe0UvFocIHGBRQ/J2p5Gwgsbyu82rS8VQd+NxnYTho276HAZe7PGxP5vbOSZ3z1sWHTkuZsHGHxx3bB+FpnUd+V9+KvuiZyi9bOrhkIhmpAoZJFJajx1rlebQtF9Ddo6UO8rtKsW/PeU6RQlIWqxp+KN5mmDGFxZ5xrWivoT3lXswavJuxPYW14+1NyPqSLvSh/Sge8LYnbxtCETfN4apUmezc2fZTV6my076rPwbzwJycQZ+u8K4lIuml+XRxaLF2OpQWyj/wqKEGmwh2KNvAf6GyYHG8dSB6Rotg92bAp5lKlUflc8qNd/at7CTp83iWFHX7zy+KQhOyFJUmgJ9+j90Lz6KO2rgkYMOU7LWb2+AhS4rw4wY5vBYwfKz9gdWIv7Mw7o+ja29DTA5AfGHjg4AM/7N86J40si4N2K8Jj8GdbK6WzB7eNm8GUWAMR+UUkQNisqDa55q68DKDmRZzIL3fS5P4OzloN0/ScCRdV3tQIJqpKzwE/J9xvml/+lTdG1vFppzemA9oogto0iMrmudqsTdtypZtTfzDUMfxb5mZiqZ/RkfimZ/2ZT1ZINL8vOQ8SoEmUAEPzeAJA46o32rgizGE98lQdp8N6pMXwOKzfgnlYv5mvuTKa5r9hTiWyqJeYcyr1/bFyKq1X/MtzKqtkhvc/ntvFLN8jY8Mzn21FeOZU4uyFwZxKRX+snErAWuLJqdS3u7hrAXOKediKqdpyka9VW+WMxZRTyZMANacSkADyCSpoPoFAOZXIKn3iz6lEWlIyOZV1IMC3CbDjZHHlVIZdLag067yJ2DmV/GQYVbSuSpwlA6JmJE5LBmT/x2HJYB+MtWRQC+a7hz6E1xw5feCkOXIPj4PmNT5Ymlv78DVXQ9O87EDkjEPfMs3yKqbZVRd7C26hZZqPKAVFxzrTHIUa4nV29wR8JMelOY5Obj6QE+2akeXaRN2S8P4Dev1XNhhTu0N5lLEmY6fZJrksu2Ol7V0ZgPUqmFDiDnJalPucV6l2fqmkjzx/zknRFKg79EXrDm0O+POHoNgD/shStzgG95FwMA59gn4EpU/c+phXSXucwR+X/dAM0eZc5xZf2AG5zkhbCKUmg79VpBWRZVNbk5osLSqNhd+lIR37o+l4ccDzZ5+2WlgEHd0xZOTSj4K50F0sPEUl+KCdjAy3A4amtzu4A9X2AD6pA25Em9UhM909AefGhE5aWxdjQz7aQfjehKF08NVW9sM3YKy+COiHX0Wx0WBcTbGoTXG17rzwugvLE9iTcgNEfqXCvsv+2tynyLA06/3CnaZ3JwmeHJtAHxU+OW5p+dXODtn12jlWwaynLFAjiqiwLe+YrqhtWT38PsLb//I6g+hDsKtDB6fVylnG1+wbdqyxv+CZsYyFp0hGnv/6rxya3nl/Ds1G3zxQ2U66K4O0BweRFDFFqigkXtEP/s9QSpvio71bBrkTdlfXfqc/QJN13Spe3b506MzsK+3u6niESnl9mS7KTHW5vL7cphOqZi2cwUfO8fqzE2BY0Z7MLFF5seZjRlTA/bdma3t/F0wTbbmKcJrozyaxBI4x1QA6LTR7qJNQZo90vcI5gy99Ntx+xb3uzZ3GOkSMqjmh2H7e/NYzEVotFa6gdGRnrqcHeZV/wMo1wBrJw8uTAybQtG7+QD7/B+3uhOOVP9vaUD4GjFmSBhqKOD4nAVrXHBeaS/i8vcgIGHQLq/xh31vktzSlLP9hS8tjRDiV5KqofInuZcrxYXGBniIc9+000l6Q77H/eW1hvgfe+CuPeupMTey24GPmCa+WZ9V5H+zfTo+6FJASDCqSKkR1zmRgagYEJ8y24U15W2bAFssG/MqyR+6QsgNeFVHy/MimvafOSBS03Tws281rg+3s7wQEWPhHGqRTByVInZ3a3gQJ0HZkTNsBQ4EwtmtbpmuL7Vb+ynYfBvZVZZevZuxJeSKlzBkSLmi7+Vi2m49lu/aGqcFaFcexjKNPKOO0aWmiCFkHO80IufgTXFk2X0J4ZQm9jvssnAs5OjlRYJMa0EovaNuapDskAkZdtnTt5KzvclrGh658u1uY0e+NROudggqAidjoCtgf569DBpBQ1iHZSxhPFgZlm4UpLRm7SbVIsHKTjC0LfKZp6/ex/VvWIN68T4Ibfigg17qFB/LpgqJuR1jg5tfbQMSB0Anpjah8PXDzqp/XpprT/ZrrZTV/TzJIEbqyoO8v8jsqvOvDVZv9yXhX8c68FeF5HyVYfboaTJABtRgnyqkpA601ecRxam9mtqUi5lBbH5YX2Zu9ksU7x2MxHV3J3r68cD7bjwWZS6SBXo30Xfed7myyvXaDsqp/4RfB6Al4WeHoCe9VcZgnMA/LPPqENQ8/TR7NPAN/QkpQTvyvR85GU1dzttYa42Oj7PaS7C8iHt3ZLmAJ+YDSdi7lQMvV52JZLjpX0pbjA0tCKwWUwy+0eVPJFunrRRoPudH5ZV79L9y9WPb1PGcI4p9C+clgQhgw2qD5dCAJZT7V+dZH7Si5s3GewZu/WQNdBJ/H1JUBWJvcvBxofablAAsW0xuEasHRAfGevEIH7sDVWjetIp/Mi3pXwmtqWGMrdfQHH+WUBeh4UlTWpReYApYlckffhj4nzwsYgwKI7mtf0pLmLuxpnq87OmDUeh/BbLgu4FcSVZTV+9duAmf00xWQyhWUKl5U+o/6cZ5UqAibyH3WT7cKlqbkeVWGSI1UGv5+MsfWjBET99ZjP8WrH3I8SgmNxw5e3yrmQ+KIOu3iwdqAONB4HIQ2HgmUGIScYnBPDBLqrXKh2SMP3V1lme6Qd9AgSrmbZBKDCgA7+h9riZeKITEoJD+/cvHyY3gkBpGEE4NI+BZbI6N11cGdNi0YlnfNPNLhGdX1PEcwO6G7BdPbm0x1AuwglNoKCt8FrcsCawwwCk72AD/PhD7/c/5ocRStmkeQz2rHuEWhrizY3IYDItccqHaA0EkjmKdSkN3euWQQLKnfu7mWL1wrPdGRgJ270g5Nn2KSabDZIu5UNeIUnXdF4aVo88u/mmOQjhkHdt4elLCOShKuY+t0nCdhm6JFfWBFfeFKiRQK6YMkmvM/KR/SIlTUslwbnFJy2s1G92FA4wq4jg/gI8hc3pcRPSns2lww9M2gdKPSkV3mj/v26r4gsmgNXaFZDuGlsNAbxCEY0D0wBHPN5s/Bg9EcW5szTnrxBe+AjBNkqgSsuh7yFAxWXQ8Zp4JV10OutWEPOkauAGAPOkZ6VtiDjvVebg8L3xFmvuNHry89h15YAnvQ8apns96OjtQyOkQa+0q6KCQY9qBjxYEHzxSaf6Buqj+aNm3l7XGwBx1PiJ5NCVF6bbVLPnM5c2rhANiDji9l1oZtKz3PSIxT77zH4fIPofwbsPChyI7858vy6G9/y5qm2ek+Gxac0x+H0oBD0DoU0UsDIh+D3qGlAf8hodByNVGlASNQSgP2pRVUnmZH/Lo0oAaaKX/X5zyV9ll6JGVBqGXR2U+hNjoBtmJ8zpPXK6znPHm9FMNzno5f3BR8wCHdfO/wInWFk1X72hOiFv9znpa+wnr6jOKr/9/nPF2efjP6y6Rd9O2Kpxk0le5vCfKcp4qXWAYDejThUr7E9JynHaRpUwwV7Gkpvfwaa08vO4nrc54UL7h2vWKobJYxcvTOwyNlt+Ew0siYhqt5IemQthif83TQdFp0dr9ZVntZ3ZKXul3dLdHnPPE8HupznoABBE27Q0ko0+5vyNDSDuiWy756aZX3orN2A+tLlZgZWvpNLIa27sa/nKG9llg9P1b1iUVpr9gdl248+ownQ2u8tiKZEtpktnlREsfgeb4uDgztpJtYDC1gLfEwtDnWL1I69z1ET1zr9C1TNvyAJBlangSoDC0gAeQTNNF8AoFC5UfZNfJms/ubbHhyp+caivkHfEPlpy90akAytEhLSu65JPUPxPlckk1GhZWd6h4Qm6Hlh8q10LoqYXjO9AzviSfNTWnBfaQZtOrJyiJu5J/wnMj+jwPPqf0Ii+dseMh3D8MIrzly+sBJc/+QylWbh0+gpIwsS5XTmB2MB0Nbh6V5dB1fc200zYke6Lq0UFa9ePkew7ypqh/HzJPW6NBA1z9cRqAFuqyBhYL2M5RAV5F5QWWS1rNfB7p0CD98Tob/EXs1gmsZsebEzQNrbywkbqUgtRqs4VN3kT98hqNpbnC1zx2/iccoRxYsVouYUyq4olEGv6oPmApoxHZ2ZnFZgE4iUl3RsnJG8eufcfmXcfp5Gd6q5+cBK0g3tWqPUz7X4+qCj76mwaP7+tOCNE/9+oaFTCXyXW3IWqPXgjXBRGXuWAMmqbva3tNWKgMmCrheAlcgTF4dObI2lD8GVixsrooL/q2lxLC7u+cKlpPoSFeNh/qfoxqWGAYmasWt1+2SishN53kzEbnpza//qm8nUaRPXr0whX4w6tLnKvq7l+3s2wWAzJNAmbuISmwZd5wnc3sLV2vCzE92YPmsYLE4vPx+lqMvr3vwTv1Favk89Mbn4WlPrFJPyFncuZknWBik68/rOgl7dXgj3pucN3mQbAtFyaacx5MNcgm6hHfDyOVGa9ywiC0OoqciTYdH8ZVrmMVXrvElH0F4ydkH1pawxl02TY0mTZ6pV5GEj+TI+RQHyd9cwpI86xJf8pFokhP6eXbIng87cUdaCHbijpwaYSfu1k7mB18EuFPSj2uFRIzteqT1z7NT+zGadMFF2iRCqe/R+EmUEhwOrfXQbHK2h8b70RM8LYLfvTbXu7LOWDB3yoYFrMAdWWRLX3f3NgA3I/mf44CfA2dLNgdYurOdmqfXFWwwV9jHFbBDq9cgSDUx7lM4x0ugubUFboGFd/0VoMd3NRSR4wXmmOhfae+qQ9WUlwwLLDeAm/HhLc9AxUQKoGl+btm6Xvom66cmW3S75tyISO0CLyQitYv38q98BbJ/t9NXKILsNKjcXlFHMufAJ+tcQa0x0Url+rcoxxXoamDXEinfxEHltSo9bhgcuV7edVFBRbXg04WgDuIh8jEPgq245xMX8HoShlr1lzv0AIt/o3J2AV4suA4aMAeqZ87icljueuB7vPVM6EtASN2FxUWAHOBPe5eMqrylOWhY4BJkJieg2dQirYxcErdnkLSXksqFRsEbqgi7WufyRkGbSFA1ZBI91PWdREpxpmBLatrBfMs0px0PVBcUCZ6ltZFKwkEKfUwpgC4OTVSjSCgTleVx2oUzpFOGgfP7TmU3mikJfJ8evACvlzvbkSk6ERltldbfAhgGLLDchyPTnewhcJVWzUt2w3TVrzwptUiQ8+CEbL1kg3VbQnoj2lvrMcAnFjQCckaKyj6mgyu1ZyLOAflhAxHngLyMAcQ5IPI4j98uhdLeEeeEA5qZVrD3N2dEC8gn0j6pL/t4D5o53jR3sfyYuXVp6gL2kaIKx5SoHX1QSAKxu0booFBodIAlzymNlTCRpH4h0kBb8LkcTm1Sqb5kg7N21CCLGIeeC29MviyYNyZlIKySwS9Vyr6xdbtG0CaD/UP/iL29LqK9T5ABVXrzDEul5GdtOk5Vg6WL/1ogZNaKRPPFwefv8noMWCNeKHfePY+nFORP9dH8KZELxU3NeT948rVay+TS1Ro1Y4YcEb63dheKk/uAVSjO/j3eheL+iIvdvWqMnnnCp6tWX3Ot03EvFIfMBMKhBlrTe6waaIfei6VQ3HyFddv31WcZpk5eu2hkhas2roXiznW3jJr5Pco0otjD+N0fsWdxEMkeUyS598TLGuT/iKtQHPkvx/fvx+qalro9KYt5MvREu7s6Hgg1ry+jlkYD+rJ4CsXFvHlgcLgXhxL7et76xX1WZBCkUJw9phpAp4Vmj9EklNmD2IXiNALchofeizKLq9lZZZcyZCHa3eFUKE7xHVahOMW3YioUVzZg++am+zONIvY7b9xpqZIpkUJx1KZvHLW5Osa7r0U+0eeqDsGh2BjpHVY9q6y3BErnFVOhuN0WjisMi7OMg/rvrl1+NSVETIXizh8fd8nhb12zw1LfK/de3/gMB9stfYtlO0Ui2U6oLgw+heL6NibuGDr9qnFZYMli5VPqKgQqFFfxBrMC4xviGEcsheKQiz+JF4rjOTrUMmmhb3EvFPdjpepzrfv1lnu+j7b0vPTMXeKF4hTfYikQ/4a/DhlDQlmH/K6g3u57I2Z2uxVgnO8/tnxU+K2uYgT1uqlUYYB6kcpV+IN6chd9aLqnd5pFJsbNKC6mC5ZHJhyo1wUUCBUfuq1c9X8L6hVu+LZq5Pw7Zql2yS9/PFAVfECc5EC9XGUsg0VKxmCSAPW2Nqjc13e+ZbZ5yOX9j4wjZuEK6inRCjSTNhVTjnZycDvZe9ZHHEaaE6bhpknIcB0C6qWOGXDj88juBkkG9q7nmMMFK7B1NKjH83iooB4wgKBpdywJZdr9DUE9taVZB1/QWZaFb2f0c3ctlka7ZZxAPXf5KgxQb5x81b8b1KsO7/fAIJVrUZZUMOvmlpHyeIJ6NdNkI54U9LQ6ntf1WUaNySocQD0n0FqooB5gLfGAeudTY59dJU1mJCrnnogfbGIoSVCPJwEqqAdIAPmEcWg+gUCgXlq+OnUjc49xsunIb6tM0p3F/7BLpCUlB+plda8SI6jnbFJYmXOke9VvAeqNR+uqhMn9vTdsts0a6S/0DQ3aG8sG6FrjRL0g+z8Oyb/WPaowkn/1e/DdwwTCa46cPnDSfM66WxutNVYYhI/QkTp5cwgHB82z5LA0j5bjaz4RTXOig3pHD8v5PGE2mux7YFWokL/zW4eCev9wGYEG6oEVqeoUq0SDegm0gsrvVxWrfgnqTUIz5W8Hje05e3zojaEcq3Dd8sXSnKVrJACNvZCpwoDGcmWEIl/EgMaKdLTHKfULpu064ttt+NGbkxBx6vZBY/231jsc3VfD2DqC+qchY3IiDtDYI1BmVGgMkFmC0FjaYbk/5ywaZZGtUBVNG/BZ8PmbkoXGeLKhQmOAbJBLmIzmEggzoyKnPnwIJqTpcJhQfWSxJlQ7Wb7kUwgv+fPEc1FcIz3zYNmoGLM532bhI/k7ysCupgkXzHJuPvW/nTw/CwfJKdJYkpOl+ZJPRZP8dwGU3l4e84n8eTT16H39rLJAj20Y94kfoDQJ9CGogFK9dHtnuLYASupSnzVuD1AyKF6583VRuj+CWmsXoITs7TgASvqgcqjIjZzg2gCe2SEuQOnJ2pd/p9hwLFK3vI8cGV7NJRSgVC+NpVaBdIcG7n9nQAm5/JIwoMQbBahUjhxi6farDIS2AUqjTocpjHWzNM2YvPjgsdevkyUMKPG6OKoUBS0T1TQSykRFUEDJf/sYh665+YwDD6duvb84hNZBgNKk3lUYgFJ9LxHnH/+fgFLgM6u53MgjFkf6q3JvMY8Y4QAo4XxAAqI3+r2rMNAbud5VYgaUmoZ1K8oKnm11aOFdRmFdTRAOgFLne9sfpBX1Mi8c9WydwY9xL3BQCejWGCoV9GrTMVLbACXkab3EASVej0EFlAClIH86Hc2fEhlQSto4bOXwHTuogX11PG5se3ZTDIBSfJ8qDECJ0kdk2hZqbuCvAaVpj09uNFa4ycgefT366XyZzbgDSsgMCBzYm2hQI1T2xrUP6iK+PYDSoWnGWld8aYz8soTkV73NnHAFlMiTPmkv6PbB9Jj3cLlLg/9wx0EkCqZIan2Ily3F/xEXoPTRzlGN8yaNVm5xLOPdsI8NhACUeH0ZFckB+rJ4AKUDWe5VY1lFlNJLI/onFR30JAigRMFUA+i00Owxg4QyexAbUBomlzn+04t7jE0n3d6cHXPTUcyA0nbVKgxASVlVZJio/YDSMJXLvmsSFloEvbqvPa6mIFEigNIChRDb7nJv6QdsrZTe//3nJhwgl0hQTlSOwkmVQGmMYgKUPnX5Y3zoAGfqVrtOJv3+XO0tJkCporYk0N5OkVoyPq229rEUHQfbTcO0nTKBbEeiiAdQWj11lJ+Kxier43GLaO7R60YRCFB6oYJlnFMqBDKOOAAl5OJP4oASz9Gh4jnWqm1bk7QCULoRNz9YXfUhZY8MlTwm1i9e4oCSMqYCdSr8dchMEso6pM01Dwe19F7x1zxEUkiwmofIdGlYzUNkdhms5iEynw32lEFkUAr2lEFkGhDsKYPILBLYUwaRp86wpwwiz4tgTxlEHtPBnjKIjJQCTV2hJuR+H2jqBjUhl3JAU3eS6ONUoKkH1GT4V40fM4Bmtnt+5fYfRT7g4xh7Qk2dB4WN3b/DzjJS0af6Uo7HO6BJEWp69uhcWR+pbKNAPSN6SkDnYUCTEtS0b/FEsvrpG4zjlwcxxj4fsgJo6gU1lb/qXG308ZxpePcJd6QszeYCTb2hpjdb3VlNUlxK3MFBm1LqdsUCTcpQk6LtcN3pu54abymTzjp8OmYE0KQCNfX86n32lUGcVcrwOYsVZzSaA02qUNOyhpe5svN30NeX2x+62a14AdDUhyR6ISZUD1ONhFIPc2XPOHrCxDhKqE5ZwbQFR/fjUA+TgjZeCXPCj+w8OKUp4ly8ives4y5YR/zxXfg+koqm+e8KcX67Ub/8xsKZFpsWmHZfq9G0UPR94wJxRupjQZzd9MUAcYbay6eHcrmMiNC+A9aMUbhMbIgzSB8LLVuo//8LcUY9rE5ziW+wOBhf1uPCQLYgaiw5iHMcpsG6ScZgkoA4FwyZl7nz7VHz/KndyrYr1WXiCnEG9vm+qdeiSsqeHL9eKqHPHHEYaY9GYRmuZBRxNmm4Q5zslwO8K0/Np4aWHY0tdn4bKFGIk+fxUCFOYABB064BCWXa/Q0hTrlZWjF3N7lY7PO/mRvzh3upmCFOkhYWxFmt+S+HOHv32Mo6f20u7eA13Zpr/YoRz7ZsH8Q5v++FQ9ecKijbltcdvRszLQQHiLNJEwviBKwlHojz9BqHs5u8rE12j1M46Oxw6LkkIU6eBKgQJyAB5BMM0XwCgSBOZlCP1RsZGxkHdr7T3fD22RfxQ5xIS0oO4vQZLk6Ic79RYSXde/jvAXEaoXVVwuzU4wu1Q1fdTTZN7BUUvH547gOcdurI/o/DTl1ZF2un/mE43z0YE15z5PSBk+bLT1ZM6CVPNwtPmDld/rxfe4vogppHa2Jp7tXikmlomhMd4hzvvcEvpGiXWZaec9wuqbMdC3H+w2UEGsQJPm0xeSQKxHnDvKBy0J6Rv4Y4TdBM+dtBnBTmvPsH000tj3C6mH8ivd326xvGHeJ0H4oFcY4bSlCIc7+FxpeEo8qGh19cLYnb2nsnrhDnthE7h9nm7DcIa7ieo7si3RsHiNNpKBbECcgsQYgz465V/NIuc2ibLPxMXYYtFsxRkizEyZMNFeIEZINcAh3NJRBmRkVOffgQhUjT4TChfh2KNaHebpHclPCSh/fo/dz28ljzAzcUl7iMeXsDH8nfhCfmpLkdYuytK+EcSllcjkchiiGYhSiG8CU3Q5P8d4E4B4ek+Go6DTMpPpm8/2n2rMkdAnHmamBBnAs1OhLiNJuSp6UxydUyZdE269GRaYhTx3ZBnMjejgPEmaGBhSUGaXQ4xFkUnmFr+WCJQcljldr5T24LYtmShjgXYqo1TuM/iLOVECdy+SVhiJM3ClDJRWAUiBHiHC4bMn3rJaphxsSG2KTURU8kDHEuxJQC6OLQRGVOQpmoCApxDtzd5+vA/REWmUudOzlqzx2CdVs4QpwlelgQp5PefxAnZJ9O8dXjZjd+Nso9GXb9yNttPXCAOHE+IAHxxFw9LDwxUk/cEKf7ScZ6XRtr+rYXEw0LJ2oLlpP+ZxCnhabKEeb7M7Toa3m3+i99eBkHlZwwVZqmJ0aIE3laL3GIk9djUCFOQCnInzLQ/CmRIc6/7DTNK1jOViWPmZOfJbw0Fr63dkOc6mOxIM5TY/CGOP0vBVcznRYzAoeUHdBifVLFHeJEZkDgwCcqj8XiE1+MEQvE2ePSgQM2OneNEiKHfe3d9Smi8m47Ic7d347fub/hlXHRcrtduhen3MFBJKCrYIiUNIZ42VL8H3FBnLNW1b+38tlA2bd09AS/cOp9QkCcvL6Mii0CfVk8EGeWH9Oe5rKZvrXfrUB1ZSPB3iw5iJPXaVHVADotNHtYkFBmD2JDnK9XVmzLaog33L/B3Kv6AGOsmCFOtTFYEGf8aDFBnJ7lN/sve+JglWZVv2prUI88iUCcH2Z/ORESFmixvtezs/5PC/vjAAIqjsFizRpGEyiNUUwQp+1K+mqO0myzIM3GCfrXTgvmLeAHcXZiePVhfjQ2KHHRy1x9qV6kY2mj7SpGY9kunkC2kxMTxKnqmr5laYiv2ZGqymtP9h8Q9IyShTi9MI1DJ5BxxAJxIhd/Eoc4eY4OFWG8Ohp3iLMfPWiQrYqn6eZRrOXAvkrwSSuSgDjjR2MpsHA0fx1iSUJZh7QZ4hzY0nvFD3EiKSQYxIlMl4ZBnMjsMhjEicxng0GcyKAUDOJEpgHBIE5kFgkM4kSeOsMgTuR5EQziRB7TwSBOZKQUBnEi9/swiBO5lINBnMjjVBjE2TdHUSv0RZVh6JlpoRV3S71hEOfsPudyh34LMM42W7Jgb97deTCIc6ROcUz0nUGU0qVSeTNH98qAQZw733RJvPLXB8tjg95tto11U4ZBnPb6qrmFro+sdmk6JNtF2tXCIM5o+2yryrHdrEq5D1Zt83DoB4M455+W4pydlcXIGZmxePmSgf4wiHOoQ7ViUmYD5WC1uv71uh7RMIgTudoSIjVBpFPk0J/ktSLtbPczZnG1m28tC/6wCwdS0wptUBLmGB/ZQ3DKRcS5ih94jk/GPMcntZzjW6Np/ruSmg+761+3Z/mabL6Vx3w07k8NMZKaQQwsUrMLQwyk5tzsr6vDjr80Kn//pUuFUtJLYpOaqxlY/Jgd4/+X1GxY7vFu6JBFtCM6myo2XulbSRBScwSmwbpIxmCSIDUZysnxtQMKjcIWXPQfr7MlA1dSc+ych4u2zb9hGGcxMnL9ZN1sHEbabXMsw+WaE2cnhjupKV0u9/ltKNu4vFEpQY0ZOliipCbP46GSmsAAgqbdWSSUafc3JDV3esR/llKxMo870Yt0dvmBfWImNbUNsEjNN9R/OalpcfNYYcXFtUY77/zYqP50EuLhpu0jNfOPDVsqzfiDntvtS5Za9bcKHEhNsgEWqQlYSzyk5uFcnS/1M+ZZFYwc8pTiZVUtSVKTJwEqqQlIAPkEGzSfQCBSc6aZz72GA+7UXJugzfVHtw4XP6mJtKRkSE3rwkrSIZo4Sc1488LKP/bTfg9S0xatqxJmp07uHMH4PjmbEup1bcdz1cYGnHbqyP6Pw06dboK1U9c24bsHO8Jrjpw+cNL8pWPkNPlCF4vSXVutaj0/PcNBcy8qlubWLS55NprmRCc15aaGUD6nKVATRktPP7Wm0/gOJTX/4TICi9SsMUUhNc+bFVQqnzP9Nak5B82Uvx2pua2r98P7DUqGGbLOftcG3TKXAKn5YSYWqVkyk6CkZr/dmssUtDNpUZM4lv3u+SXgSmo6fOYcpS61Y6R8W2DywKWsvVm8IKn5YiYWqQnILEFSU1M5yeXolUBK0FS5imG7R7EJRGryZEMlNQHZIJcwF80lEGZGRU59+GCDSNPhMKGupmBNqAspfMntCS/5NacZy3toq1oW9x8//viwol74SP69IDh0ydDJhilds+IMs3zG47FunIG5bpzBl3wemuS/C6nZI0f6jz3xH2gpCof0Zf58uKVDSE3KTCxSs2FGR5KaJvr7P2XW7zU7di6wjFGTK/hct/aRmsjejgOpOWkmFnuoOLPDSU3teqVJTdeCzCMNEwa4377gRihSs2EGlloVM/4jNVtJaiKXXxImNXmjABVPVJwpTlIzeKvJwuCmyQaRtbuHqyzcLkjidDypyeviqFJUtExU80koExVBSc0lXLktjJJtZptnk1OvpY7CvC0cSc0PZlikZpLZf6QmZJ+AdbKkJV6VZkf2VAx7ckZrDw6kJs4HJCCD+MIMi0E8ZSZuUjNw2y39kevKLFMO1ew3TWQLPoz6n5Ga77127sqfn0fJend57o/XQ0bioFISpko+ZmIkNZGn9RInNXk9BpXUBJSC/OkCNH9KZFJTvsymcMBCT6MtTdnZj1x8P4mB1LSzwiI1v1riTWqeWh3gvmNfmGWsVG+XweGHj+JOaiIzIHCAEBlWWBDiUCuxkJouQ5x69H750SywbrXqp3vBiriSmv01bS+uDr9Mz3wz/NYrhuUoHEQCugqGSFctiZctxf8RF6n5nlRgeOX6K+OQ/rSVZWefDm93V8eDTeT1ZVQ2EejL4iE1JyUt/WaQEmFW8o5UebDLd0uCkJq8TouqBtBpodljIQll9iA2qVn4OSrJdIkCfedLWwPa7ZM9xUxqWltikZo1FmIiNd+xnxla9ltFObp1Q6d91wIGS4TUVM9ySA0zO0HdfEfeek1sxQAcaD+6JRZQRpaQR+1IUvO7bLK5XvgYejpdL8F4+6SzYiI1VW0aQ18NKTQsNyv3HrXfZQsOtmuywLIdMBQIYztFMZGaV2w7W1I83xgHJXaXG6v1qR+BSM1DmMYJJJBxxEJqIhd/Eic1eY4OlVPsZok7qWniPUf5yc1zlLKQ/vEuE0YtkjipWWOBpcB2C/46ZBEJZR1CaFITSSHBSE1kujSM1ERml8FITWQ+G4zURAalYKQmMg0IRmois0hgpCby1BlGaiLPi2CkJvKYDkZqIiOlMFITud+HkZrIpRyM1EQep8JIzSXB1YnTOg0wjvgoZfLgXMAVGKmpdTelgVk4yaJc72LU3VcT98JITd+ziVGzA99aZAzr6pSaKhsEIzXTq95rlQdPYBxoTFmaUmtSACM170g9KXIbeYsa5r955fbXE0bDSM3MzOSZtiXuZhsyFUxuFn+kwUhNm6KR1BGKZy1CKoLUo/0GPICRmtE/7vd+do5hGH7vauyZJ4XGMFITudpqPamZNXqCpvuXlfS8ly+4j+6onxUxUNpKai5GG5SEOcZH9hCcchFxLtUHnuNXTMc6x0+ezneES9A0/11JTeSDccVEamoXVZK0ewEaB4vapjXkAIsjJaFtGtaCsHWkpvtTq5TAvEXmiVSdW6tfjjjVHlKzndOtGqAAGVRgvqGIBWAW0AeblIiCYoZnHlchNZEqoi4PVlj244dIuo+/HMIHxRxxS96+/zBX+vbPaZMKvwXPIwCKCRqsRgnLYIckYzCRwcWsmYL/K4xiYhnrlyjmh0+OPT0CiwxKOq2Y+sdy+lOJrlxBywRiWsZeQpbpENZy8Krn41gl9sZpqifcUmXqzkiMtQzNgVyaSNZSv9mpQxPnUtK/bOIc8mPyjg97cumlf12U33z262MxljgoccUqcTDNVQwlDr6OSpTpOsHfcNe2sVctVKZ+JXaJg1xXLPA60pUo8yraj/jmVb9Y1dNZhY9M4qkacfMOP9hKgHkVNJgTpsGmScZgkihxkBVPujR0Od0o9rCpuuK8w7q4ljjY9ddN9QFFcqb7Cxw4U0YObm++M2g4ZUzDvXD5F0+7E/c2Td1iP4uWXVidnjjg8ViJTbtgiQOex0MtcQAMIGjaZZJQpt3fsMTBfZPtWbZnJ9Li9R89S5120knMJQ6GLsYqcfBi0b+8xEH11phPU+RqjYLrow0snk0chmeJg13db1303ffcNO1h6YojW7S0cShxoL4Yq8QBYC3xlDhYemaEptYBN4PoZ7p2EbesnCVZ4oAnAWqJA0ACyCc4oPkEApU4qI4zGvpRoRMl59hp443P1+uJv8QB0pKSK3Gw30GcJQ7KTAsrz6c4/B4lDhzRuiphQtyZk8ffzAjZbhVT5Cq1WXvtCJxC3Mj+j0OIe6kjVoib4sh3D06E1xw5feCkedHb8mvLDnOpmcOsfUeFeKzBQfPcRViab29xySw0zYle4kD6jcpg/VMRBqGkqyODewX3Q70/cZQ4+IfLiJariShxcI6FUuLgA72gctAZ1q9LHDijmfK3K3FQbDCmTmk61yCtb5zn6Wo5LQmUOHizAKvEQcECgpY42BA850PPgdX05IcNWRce9VdCZLq0r8SB54/4/RpXtM22+ldRJqTUthfsAEscNCzAKnEAyCzBEgcaD/uNzVhrR0+ep98UenbzDAKVOODJhlriAJANcgkuaC6BMDMqcurDh7dHmg6HCdV/IdaEar+QL7kr4SU3LdZJHho10XDvtu4nXgUx8/GR/M/K2jlWK+8yUqnaul71c7fhILnRfCzJh87nS85Gk/x3KXHgu3O8xdSbVNPExQZxh4PXze6QEgfTFmCVOHg0vyNLHNRTV8grKMcZH0lRtPcrGWOEY4kDZG/HocTBuAVY0H63BR1e4qBP4t3K4jFJhpkfpsbtLpxdS6gSB4/mY6lVMv+/EgetLHGAXH5JuMQBbxSgcv3dFoizxEHJ4oUqXGZfxpb6tdETZ85AFEbq8BIHvC6OKkVJy0TlRkKZqAha4mDM2nPG1jfq6bncbIPopr6bOqjEQZ0zVomDQOf/ShxA9jl0x3TDi9qX9CAptVexJd264lDiAOcDEhDer3HGgvcPOYu7xEGkxpQ+5Mhs033F/Wt72jXMwqHEgdG6jc/CvvsZpxTVOd3ow3LCQaVATJXsncVY4gB5Wi/xEge8HoNa4gBQCvKny9D8KZFLHKTkXTQPqtY1LZqyLVrh4sPVYihxQF+GVeLgjRveJQ5sQoNX1q32NThePHmAdpDOYtxLHCAzIHCg9ynLsOh9tWViKXFAMc0sG2FiZLXNJGZKSrGfB64lDv407q89NmsyrWCYT44nIzwSB5GAroIhUrUb8bKl+D/iKnEwZcO8GXSSIy2za+NG5yjNNEKUOOD1ZVSoH+jL4ilxMGjE4KqBs9NpO+wyFp57LqNOkBIHvE6LqgbQaaHZw52EMnsQu8RB1O6MVcseW5rE5L0nHz6x2VvMJQ4YblglDs6xxVTiYDw9baRuaYJ5oU1deMJ45WyJlDgIMNW+YB20xWrThR4ulA/yWThg8kZuWCS2uoQ8akeWOPBXfdN4w8DBOG/cnX6699NTxVTiICVFcdpH+QHUozK9L/fvufo6Drb7wMayHTAUCGM7ZTGVOIhVebbSZ24WbUfd3yoD6QqNBCpxsB/TOKsJZByxlDhALv4kXuKA5+hQAX85N9xLHCya7G3x6eQZSrnmo4A+Lzj6Ei9xcI6NpUA0m78O8SChrEPaXOJAvaX3ir/EAZJCgpU4QKZLw0ocILPLYCUOkPlssBIHyKAUrMQBMg0IVuIAmUUCK3GAPHWGlThAnhfBShwgj+lgJQ6QkVJYiQPkfh9W4gC5lIOVOEAep8JKHJi8MNcJ2j2Fus1XZ8WWxcfOw0ocjDxrO8Bjb7ZR8XTHgd92DFWDlThYxD5qaaU02SrF/o+01MFV4bASB3/cV013+BJiUloaZD7HcfEiWIkDDXlbOd2BEfSc61dVWL1IprASB9akxY+s9sy3SLNUujhhj4MirMQBct0kVKwALHggchBz+5L9o1+PMg/aPTet8xnlQTgUK+CgDS/CHMgjbY1TViHO1WrBE/mSeVgn8knz+C7NE03z35W5zD11UnXG648m2cmHm07ZvugvRubSYAMWc9lpgxiYy4u2Xjr5GmzLSAuDPqphDxyIzVzO2IBFgg3f8P/LXBa/s0+as1TaZP3BA5ej4vdLEYS5VMU0WCfJGEwSzOWbfazzFyvemuZQOy+98re0L67MpazRFtkbTT7GidGrqpS/L9XCYaS9Wo9luJvribOnwp25PP3SZcRbtwUGR1W/asxq7JMuUeaS5/FQmUtgAEHTrhcJZdr9DZnLfeThTRcKc6y2/X1L7duD2YFiZi4jV2Ixl3Yr/+XM5fa1J9efZk6g5lVREsglxt/xZC4nJ9eWqC/vZBSfnDhs9y5FNxyYy6CVWMwlYC3xMJcyt183Wr3PNjj4TGbWg0X7FkqSueRJgMpcAhJAPmE5mk8gEHNpcO8KOzLnjvGGifJ5Om96cUXcCs7MJdKSkmMuS9aKk7msNC2sXFi89vdgLrloXZUwO/Vu+a/mTOtsbRjby3bEzE1DYnHaqSP7Px5PZFyH+UTGdXz34E14zZHTB06a50ldvpLCuUVdP6ariay8DAcHzWsCsDTPCuBr7oOmOdGZy43jl3QJs0ywCvHbEHspTN2wQ5nLf7iMwGIu3wWiMJd/0Qsqbd4G/pq59EUz5W/HXK5mz5y0zqOItuXFPfajzs8Mf33DuDOX3fyxmMurKwjKXLpkZIw2P8syL00u8kt8kJmDK3P5fbyX/Z6k74wtk+Iawj89vIkDc9nFH4u5BGSWIHOZZ2/V5+omPcq+W9P7GlxwKCAQc8mTDZW5BGSDXIIfmksgzIyKnPrwAQCRpsNhQt3ujzWh+vjzJV9BeMk1Jo3KUa8OMy5zm0Gx7Ze+Ax/Jb/Rabzt41l6Tsq+nSyhJ0/3xqNXhh1mrw48vuT+a5L8Lc7kjp/HEue7eBvGHD4cXzHrQC+M+8WMu7VdgMZekds9wbWEuq6c8bFrjn2mSUCA79GP2YMRRa7uYS2Rvx4G5tF6BRRFqr+hw5tLuc/iOr6XfzNJSP2cVsDMFC3xLmrkkYapV5/cfc9lK5hK5/JIwc8kbBaigofYKcTKXnFsLZuT1em2xY9TgT+sHNF6RMHNJwpSirmWiCiChTFQEZS4Dm7xKr3VpMix9Myf54eHLvbBuC0fmkrsei7mkrf+PuYTsM6XwuvGAuBSz9RsCGcbFUn44MJc4H5CANCFnPRZNOH+9uJnLK7NDrn+crGMWLfdFnz7hnWDQ7p8xlzKNJ3MNRp0ySjSzN6esXIeHSjRMlcasFyNziTytlzhzyesxqMwloBTkT1ei+VNCM5fmO2NHLZE3TJKLnq4/dv0z4XtrN3OZvxGLuQzfiDdz6X718eAeIa8oYX9fyDIpmHMId+YSmQGBA06YsxELJ9y9USzMpZbnLm6M0z6jY1sPK/1NfTwGV+Zyq1/XqVZDNhol6jGM13gYPcZBpHBMkfw2Ei9biv8jLuZSLedtYYRDMK1w/fNP3t/3d213V8eDMuT1ZVTKEOjL4mEuZefX3ejZ/YTloaSM/e4yxX8RhLkMx1QD6LTQ7LGKhDJ7EJu5bJqn2dVJx9UsuNScNX32dAe0u8OJuRy3EYu5/CCcAowPc6kfQH0btUzNYOM6Gr2Lz8U6iTCXplpcyx7y/alZcd1d3IKeHMKB29PfiMlcSsijdiRzqfnn325RJ/+kRpIarBu3eL4VE3Pp+nz1+FlPelsWnHLbGPFAOQEH28lh2u6DhHKHRdlOTUzMZYoOqXrt0y+UnQetKLMPxZoTiLms34AJxBLIOGJhLpGLP4kzlzxHh0oc9mrjmqQVzOWMQsPGIU/KaQcmhPYPOF9YI3Hm8sMGLAWutWRKryahrEMI/VhpJIUEYy6R6dIw5hKZXQZjLpH5bDDmEhmUgjGXyDQgGHOJzCKBMZfIU2cYc4k8L4Ixl8hjOhhziYyUwplLxH4fxlwil3Iw5hJ5nApjLmnDV9duqrUx3n7UPsht8ekFMOZSyTu0zu36FPPydyqjD3S6ngFjLt9bbo04O3wYbX3X9Een4l9cgzGXpfcPrPkQvcGsbLJm5kIrhfcw5jJjyMRjPTW/GWWHReTphmgpwZhLs96KJ63iZlseWEc/tuLZnusw5tJPbaA86/hLy0iT4GtvV3dVgz1W+tIflw+dnxhIOTpgl+zKd2p/wR4rjVxttf6x0oell6796OJvWqLW5ciK2L1xOJCaa9AGJWGO8ZE9BKdcRJyL7oHn+HW+WOf4Bb58R7gWTfPfldT0c5RKydq31yLtkSuNuv5Bjej7xoXUdI3GIjW1o8VAapqNbpp+rXEzfXtU/Kuynq+riE1qOkVj8WPW0f+/pKZ+5ZilTt2zzXetX0Y97Np3MkFIzWmYBtOWjMEkQWqWpy95sfOqpkHu8QmVB9x1NrVvYYsYaXe3DaudUGXFyL4TMiVwaeFgPJ6OiWk4koQM1yGk5hVjlVHOyfvM1yekDlIberdaoqQmz+OhkprAAIKm3XUklGn3NyQ1NTMfmEye2WhUxJqwTUlVapqYSU3tCCxSs1vEv5zUDJi0K9P5fGej0rsBhaFHeh3Hk9RU3EN+7hUSQC0ZftN0VnHVCBxIzaERWKQmYC3xkJpq9iOfOfoampfeV3Z4p3lPXpKkJk8CVFITkADyCYFoPoFApOaMmZN6yw3PNM8Y2yOr593c4yJuBWdSE2lJyZGarlHiJDUj6IWV512ifg9Scz1aVyXMTn2gXW2iy9Egav4rpRVpI+Yswmmnjuz/eFCDUVg79YoovnvYQHjNkdMHTppXnFL+njghzjQ/f5VG2Lple3HQ/M9wLM2Lwvmab0TTnOikZqfXWoZX7r83CQot/Xo06jytQ0nNf7iMQCM16cBC4etmFFLzhElBpd/fm39NagahmfK3IzUvnfPWMT3mRNt/8Eh+w3cVv1/fMO6kplo4Fqn5NYygpCbHZ8moH1O+G4bqZcn5FXDH4UpqBsjelE38pGGy/QqlH+PScQscSE3lcCxSE5BZgqSm2v2X6n+P/mKSXVXYY3ZsCZ1ApCZPNlRSE5ANcgmb0FwCYWZU5NSHDzaINB0OE+pCzAmV0TKhBhNe8mKXm4Mdjj6i7gyT772tJmsnPpJ/uL5/a/SDg/T8g9+Ca9xex+MguUEYluRjWnp5CJrkvwupGTkw957st/tm+ctdX+249D2xQ0jNsjAsUnNru2e4tpCaSkbjn7KGbzdPrjvxeu7tU4LBjPaRmsjejgOpWRSGxR4eCOtwUtPROlHhxokRJntvkU//8NouWJ9B0qTmVky11ob9R2q2ktRELr8kTGryRgEqnnggTJykptzYc6Fbk+uM8yf2smI9v+0qYVJzK6YUa1smqlASykRFUFLT8GKTlueZ+VY7x59zUNL80KmDSM0NW7BIzTlb/iM1IftUZaklxt7faJI0+N5akzxlwafS/TNSE+cDEpBBXLsFi0F02yJuUlPHTsPJxsDbKO6OV9mi5RTBknb/jNS8uWeMsbaxB+WQht3D+VU/fHBQaQ6mSgZbxEhqIk/rJU5q8noMKqkJKAX50zA0f0pkUvN77pS0V6tP0LKXb+65/loZVQykZnUMFqmZFIM3qWm+wq7HSK2VFjlJJSNnxZ8XTFDAg9REZkDgACGeisGCELNixEJq7k2Za/v6/BXzXVZraTUhNYKJBO0lNYfExrI+1gaaJvchOT6+MfwSDiIlYYoUGkO8bCn+j7hIzU0ji6372rmZpOd4a5XV/MFpd1fHg03k9WVUNhHoy+IhNc+rqCQX+t6gbvm6w23ckk+CXlZypGYSphpAp4Vmj3ASyuxBbFIzL3m7hV/QQVrK9d09ZoXu/ypmUpMWg0VqygjPJfiQml3vRVTemXHMPCa6YrvajDvDJUJqrnQfcsTPTdu4TOHE1XlLvqjjQPsZxGABZXoS8qgdSWreMtpCeX5Sz3zHu1EOeq+j+omJ1Iyt3RH9jPTaqDzi3uoi872NONiuH6btZAhkO3UxkZqBnYtvZR7eQ4mL+/GMNKFGMAQlWVLzXTSWce4SKD9YLKQmcvEncVKT5+hQOcWhbVyTtILUHBPK3N1p9x7TsPcBC84f7RQvcVJTBlOBhpZM6QgSyjqE0KQmkkKCkZrIdGkYqYnMLoORmsh8NhipiQxKwUhNZBoQjNREZpHASE3kqTOM1ESeF8FITeQxHYzUREZKYaQmcr8PIzWRSzkYqYk8ToWRmjfucL1fx00yOuT2N7WsrHMcjNQc63D2QUH+MYMdjSMujp019jCM1DxuldzN4QzNKGvxgQNPv+Srw0hN19QhKTV+blbR8wMWvN/r+BBGaqaPvVusqE1hxFE1/Q8qdkuDkZpjVl3hXDmXQikfGdeYvKxeA0Zq1hzsbpbmv5GxLf1LN72Yc9YwUnNKj7rJYW9dTeMyjE4/oFqMgpGayNVW60nNqKLo1D3HRhsmGT+8WOu4IVbEQGkrqRmJNigJc4yP7CE45SLiXKoPPMf/Hop1jv8qlO8Io9A0l7eN8zvg62aU+bKJNZF8+J3AV+0J7a0sgD+4bKa78K5MFkXqfvxdGYds5cXimDDIHtA1WrcTy9933PVmHwYl2TW3u8wiXU/M2xKyBfINrRTUHljrxJdVApMIsCerETogAQRtKqlE7smwVn8DmmcG0OP7uDan7/l6s8iOrkwOhyX6uD7ZuKa7pfo506BelkPXlD8ZIPDFZY2aryD0hVsa8J5swfTJUFCSQ6KWf01AD5xUVimJ5Z+0IyBty5z7+fPnH23hLcmChvH2Yjn6ujO5ZFe2i6s7mIAv0jbDvRZYV1glUA9/X9xzs90xweweOVvoIsIBqpYWcVinoRTLOvGlBLAOMAP8aMumaZCxB9vbG8wgdBQwE9+FiD6KurTs1fcX+yxS76nuq8k4P1fQOM1XFBEB/tkiDuPQMY0DeBPJGwe0D9w4nX9hnIlUD/BX8mwCxhqBj7I4jgFkbX09ffJ0sqcXc7kvawR5NO9fP98hekRtmXv1LuecBy3/4aWjun9b5wtm19jBri+cXSPQKg7jHSrBMp69ZIwncttbPxNuwS6/sOD0nxb0dmVzAjjA0gkwH2AujicHNB3wN3fPFbxG8J/6YJMH07/5BdEl7vQ+7+93z9Aqvl9KqOWmoGJEZQFXURwt9LI4LCeHabmCYklbDvwQmNfQpmBFr+ZTYTbHBdsR2qgZMfVXbaZv/xJU1M13wVJBR4i6ZvrZgvuxcy60hgDXqdVCy6pcniOE1qmbSSjr1L5dVtmeLP5gVS6X+VhrwipBPKiHYTOKaM1l+bFZK4TxZjTEYhgVzPj3huGM7JWwYyqyV/MFvXuachzdfZ1YphwbFgfa/qMvXjNGZle6zPOiJA072ljS69wBrHsVzu0RbO8xB/jDy5PrQ2O7+zT/YlFbLFSs/DigbjmgfbyoI+tJwJKWXi60pOVvq0TuofinbWAOJSRPq1b0U9bpOq4/1oOWOyxqSv0gu6ftP91D7K603+kP0GRdt4pXty8dOjP7Sjt3V2qAcg2gciLPaO3BtZWgcr8K46vYwZYwZE8/FpfLdhLtTp+cpX6u+UQyjZaPGjbWzZvU/iGM0ArpI3DQio6pVVPH7hL4JK4stOUC3wQudu4k3/khx4JWfPwXDfQNfkjz5jbkrCrH3xjw3wr+bzf4skfwEy0hji1obqzNcccW6K8D4o7ITTcs7oh0aUIBJPDbiuzLei+3h4XvCDPf8aPXl55DLyzBIYAUjaYuQYMZjF2yav79WFaHT7JuVH5Sm9ZhwYymz1jBDPtP4g5mzOg2XdbA34iWP6HQeab8kBEECGY0fMbcLn8mwI7szZs3HRDM+EP1Y94tXW/Lg1F/Nz5KpTIJEcygY1qn6RMBrNMhwYxOE5yr9uw7a1ps9fbdSY3FwYQIZhz6hLkfJoJxSJIMZlyMeFw6xSLTcFP9Jusvh3bTCBXMkMM0XsFHSW+JCRTMWCRjPl9hbqZB6r1XT8O2joqTcDDD9SOW5dQkbjmxBjN8qxLzq9aOMtxH8d03S3nhPUIEM3hrCNRgBuAIoXVqDOlfEMx4mDrh7ZAnA6kp3F32L2XLV0o4mNHwBSuYMelLxwQzNhrq5k1/lWkZnjyQ5L66Zzfcgxnkvxzfvx+ra1rq9qQs5snQEzhs0Ou+YG3QQ7+IK5jxZXjjbG+1WsPdnoHMEQsLB+EezED6CBy0moSpVUPT/1UwYyuaGyN0MAO56YYFM5AurfXBDMuN7wabxhabFsZYzFU4o/oJh2DGNjR1CRrM6DwobOz+HXaWkYo+1ZdyPLBvC89gRmDfKoxgRpaaULY8zsGMxypJ23vVTzTecOqO/PsflyYSIJjhD0qCujS07iuRxFzBHVlDQ0MHBDOi19nRPjX0pER4DqmM0ewdTIhghjamdUhEsE6HBDNqFvierRzRmXHIfWUe4/JRO0IEM+rUsIwDeBPJG4ckyWDGtmNTB1BJFIvDdl1P2LjrPyFUMCMU03hLJWM8YgYz1iRHcnbNzTCOmrxmxfWzf3yTcDBjEqblFCVuObEGM7ZW3hpZZ5hGTzvy19eC73o0QgQzeGsI1GAG4Aihdep20r8gmPHs0bmyPlLZRoF6RvSUgM7DJBzMWN2vCiOYMbQfap0wXIMZN695vHi1U8PgILdf0/vPgz/iHsz4aOeoxnmTRiu3OJbxbtjHBhw26D790Oh5cIPO6NemEgNtCGZYK2S+l02eaVCoGnLaQs/WFvdgBtJH4KDVUEytvnbsOlTSwYxYNDdG6GAGctMNC2YgXVrrgxn7Fk8kq5++wTh+eRBj7PMhK3AIZuxAU5egwYy+OYpaoS+qDEPPTAutuFvq3WHBjG7jsYIZ08aJO5gx3bx6R/dFkxi7hsaHj7i38iMBghldxmMtDW+PI8COrL6+vgOCGQs+a3wsPV9Ai/njnu4eudFRhAhm5I7Dsk4kEazTIcGMYYOPyEwfn2satt9n1KhOfRiECGY4YRpnGhGMQ5JkMOPkkDHsytpBlIID3ooDi5O6ESqYoYxpvBdjJb0lJlAwo6568stHVxpMQl/etOoW8U1NwsGMU2OxLJckccuJNZjx1zHOxa0jOBapy8OzKSkRxwkRzOCtIVCDGYAjhNapcaR/QTBjdp9zuUO/BRhnmy1ZsDfv7jwJBzO6TcAKZuSO75hghnG2wyafr06GxyZvln/1VqP99RKRG/RZq+rfW/lsoOxbOnqCXzj1Pg4b9C4TsDbot8eLK5hxtYK57fDwdxZxpYNfv3jKOI97MAPpI3DQKnc8llaR4/+vghnxaG6M0MEM5KYbFsxAurTWBzNG6hTHRN8ZRCldKpU3c3SvDByCGTvR1CVoMGNJcHXitE4DjCM+Spk8OBdwpcOCGZNmYQUzXK3FHcw41cOgWxpb3Wjf0c5yBZztZgQIZujPwloays0iwI7sxo0bHRDMUMvdu+jcRyXzkimBz1dtc0ogRDCj3hrLOgXWBLBOhwQziivcXhSvemhUsMpv3gL7iHRCBDOiMY3jSgTjkCQZzHhsUFG5w/2r4fZpL5b276yjRKhgBgXTeGqSMR4xgxlmgXl07WQ5+s4wxZ4xtcPeSziY8cYKy3LVVpK2nFiDGYYzB53QMt5NKVa4rBJVPpAYmAlvDYEazAAcIbROTSD9C4IZWndTGpiFkyzK9S5G3X01ca+Egxn6NljBjLpZHRPMeHzp1pqXci6MHfEXWGO7vx+GezDjPanA8Mr1V8Yh/Wkry84+HY7DBl3bBmuDTrIRVzBjwMJ7ufsP7zUJmuanqXx9Df41M5A+Ag8kZxaWVlkdu0uQdDAjEc2NETqYgdx0w4IZSJfW+mCG79nEqNmBby0yhnV1Sk2VDcIhmJGEpi5Bgxn5SVq3R6faGG68df3sMqd+rh0WzJjmgRXMcHcXdzDDzuFBZ9stnak503o4jg2yXkqAYMY4D6ylYTcPAuzILl261AHBjLS4yesUY/oYRe486GtbIp1LiGDGI3cs65S4E8A6HRLMmOQ8l7voiAEl8smfu+TGJHIJEczYjmkcdyIYhyTJYIbc8MbpcjNJ5hFTR0UY9ta5Q6hghhGm8dQlYzxiBjPGDIxe5jZmHGWn1OrqqyovoiQczPiwDMty55ZJ2nJiDWaMOvH6ylKp3sahOyvodtl6pwgRzOCtIVCDGYAjhNapu0j/gmBGmMHXp+zBncyOudhvMxgVc0LCwYxxHKxgxm2PjglmrI+59WIj7alVWdIynZL1XqdxD2ZM2TBvBp3kSMvs2rjROUozDYcN+ggO1ga9C0dcwYxpJX9NerzA32qv0oWZmfZ1LNyDGUgfgYNWtz2wtMrt2F2CpIMZu9HcGKGDGchNNyyYgXRprQ9mmLww1wnaPYW6zVdnxZbFx87jEMzYg6YuQYMZtOGrazfV2hhvP2of5Lb49IIOC2YcDcIKZtCCxB3MGGDyfGGXmzaMjZfOZhTH7btJgGBGWhDW0nBHEAF2ZGfOnOmAYAZzuePYOz28TY9p6T1gbi6mESKYsQHTOhwiWKdDghlZtxiyTqbPTHMW2hbfWpjfiRDBjPmYxqERwTj/a+9M4KHq3jg+KFnKq12bJpUUaX2l3YxtMDNki1bbhLKTtFOIUhGhshNCyJalkCKlRdpLmzbttEqp/71jRubO3Btvd+be1//t876fT91jrnt/z3Oe85znfM8ZApbFDJ9MitbJe8FqOcFDRTcPHZyPq2LGdETjyWJjPHwWMxy3jxHxkdqrtdNhTqbVmF2OGBczJBAt93k71pbjazHD2D9hXHP+IN2DiiVBi8fcm4eLYgYzh4AtZgCBkJWnxhF6QDGjv3vArdU35+iVvR88LVn4ZgbGxQwlP6RiBsFPMMWMgYQNt9e8MdXPuHJg3N+umzRRL2bI5DQX7bLy1yryefXZ/UeSJBpkhh/SBH2QH7+KGf7kmY3zZ5fRvF8/nmb3Mncb6sUMaIxAQSsColavBTtaYl3MiIcLY7guZkAn3Z2KGdCQ1vVixgf6vl01kyZo+UimPzkT+foGCsWMBDh1cVrMgH5HssCKGaKhSMWMmH38LmacPXWIMU5fmBLmU22V+NdzHxwUM4RDkVLDt/twMCOrqKgQQDHDaMD5q0/nJVCCAy49Fh1mIYaLYsadfUjWqcKDdQRSzJg+b3TL3IfvNQNOvhFS2nZxCi6KGTmIxonBg3EIWBYzNokv9HyvuVeneMxAqVP7zh3EVTFjJ6LxPLExHj6LGX3+zrw+SaWZHhZNafYnS/2NcTHDCtFydMwtx9dixqSCTQtrDQgaSeIqP29rBAfjopjBzCFgixlAIGTlqYmEHlDMmGFV01BYkEsOf6l0ecaiGUcwLmZsC0UqZpiGCqaYcdI7RH7UABn9PLNREi1WC6JQL2b4TS4xGGa8Wjs9x12+tPa0EwoT9C2hSBP01aH8KmaoDTt0X8flrk7AERXGrtbnX1EvZkBjBApamSJqRQ79vypmJMGFMVwXM6CT7k7FDGhI63ox47h+XF+rc1oa2SuSk59/LRiJQjHjMJy65w5ZUttmD9Xelizb5+XYjaWc/YYKaEo00qByVzF6w3RZMruKQXQAP+vOsHUEvJdow1gF/NOGaLWeCLyvmwfRxdneyUOJCLy7Ldhu6WRDdGA42XrYKW/uUmzcoWNusdi/VGvno/M2Gal7+/F+bu7+zm7pYjf1BlKjuBigm45VB/4BHQwCgIHYIoZrMEAKadLMB+ikAc+3s27eJj4p5qhmwRHNnxnvguZCkkPw0zySQ+bl3x767Ns28B3dgn5wX4g9xV3r2x/GMRdAoChQoAZecSwD/AarGExyRwl1Z6D72zsBzgj+3AwC/J/ulEFkmPZju62Cjb0b0LuA9om8v1y9/kalsukt/bir7yulG62yOOworsH+MJctOzWhnVqCBvNANJgFNgYT9QTeuH2SzW2spoW8jCX8m84myTRWe1zhaZ+EXNOlDsNPaGRMkR+eZ5zJeWaDKJX5QS7jsK//rqeZ988kb90/jh6xoiB89hoXCRR6GhXRcKoYGY7X/LppYbdman2pnUYLnqZa+F1JMsx6qF6e01ODyxZHOXHFXlRe0+X2q2h3IIU8VsTLJgFGgQ4JtbnMDsQadpMJMMNueOOn6MkmQdSi8/qntH/GyXG8jYSmFzBNYCZc3PMyOF8foulp6bCWtYDA6LhBp3uxf7K/lr4hjWSsILdx6hzDzXJK+hO7NOKKCv9YSTfcqZW5sGlYnOHZGLhH5jJDp7YuSlwLuPqGA4DEKsCo+xDq6g+BKdiKA1X9DED/YgDpO9vTe7HkkdABgwOXJ/dhXtaxYffPyDbv4vgQM52ClCN0taeKdyX1ma7K9Tmx9uu/PmhuU71HqExco/jtUFo/xYG17b+P+TgEVkSCnQv+0oLoaQlMPKwceM9nrL7tbfGwjtM6/jHR4NWPdZxfziRhyvooUZ9LbSF9Lo8XggSmuZsHpaZHauqn3Fw1dsPxapU/DEzlgLU8QWtNBTpEOdRaYYVMa7HE7RAJKRgMai/bgNn3L0fmqVK/L5cZG0L6qvu0PC8sX+S8gjN+t9+GWyEi6jHBIpclQbkaDwkouUwJWDEhBS4mHCx8aL7jSYtOcWF+8bE1jziPsO5tYOnEcOCe6MCFAwUS0QX8RKc6DdHJGXgNZqrtwfDyIILxguHO+9wVityRmeLV2jmjBpzeVeVymsejcM9AeKlq7ebs4GBoCVyHDg8Qn4RaEs4nxUzcGW7GwOOzf+14Dee1YE+wdgCeB6ywMGzsPVjvbg2oBYwnDd7JEDuyJ7tcldCiSkLxIcCOpuoE7x3qEjRLN1t7JypjFYdTSLZfNgRXvTpfF2+/buzs0vkqpzNM0y6q9C46VPUXU0QDN2dgXulh3/5UfdhPxWuW6ma5TsfJxt66/UeZ3VocvAgOz50u0cB6pwNrYt4ezMG1NHtLB3Vnm1+fBXIVD2Ci5tjx716L3SxdfgWMdldNhXNVou3YgoDdgeTQ0xnUA1+LNnL6hyHDwXI9p6uy62OiJGvgDdzZ+sB570AScR2QARPdwDuxpt08HdXhzpbbxbJG1NCG/vnEm2rSPB6kS/0feqYIxP//MEJGAskZMYpVzvXmKrAD45l0FDs8HMG95tDhAyXNY25qS0vlhVECh2f1OZ96aSgKmg8/gKS5REdIToPT3LXMXtGenqZ+vFTf4fmTpe84XlVy0Vow5GgDHccOpgLFqTzceDdOw97dBRTdEsiAmcPe+sntwZloCfxHtAV/A09TRF7Pffpt0RlKgs1uCelPdlthn4/LIByNXKYRN3J289DvXD3jYbB/mEZ03I3HKhQ9GjDYEHXwf06D2WgVVk6kRVf1M2I4AAZj2ACxkOHFcbt2U6bDmZJ8beg9z1m5akeXrpDZZXqSc3QdBHqtB7h8DlIhDLBOyXDnLnrBrYlMUXd2BJKb9r7DvI3Nr9swR2CwHObONK0NkKx2Kd82UBcZNzLpMC36rwcV7lti5X//wFxG5vlTXew/1ccrCXaRgDkayTxycAPw27wiYZdBuuj4JGonUcCxGxwNwSkMkB0rtM8q3YmAesxCGfNv7TUCoFOAi1AMG95Vl7HvD7RdsrXV3tsU86Fmil9vzqzQlNmzuGf1rOu/C1N2p62/qEkvpBTorvzy91Szpj8MU4WAzDagzL3IPDLHmceZMnNNpft0T+fxncxPtGJ4rGMwnMDkyJ1hvZbpHvbAlJ53JrgpKzb8ZHEKbd+VOZZ7xq9T5Ywwv+5rwx1hOjeinXA35bNkW8ZLtkH5TNlYISEDLiTgZkSFDn1dGVF5pNsQT4WaDoUBNSMSaUCN6pD8KO4ltzozkkEwjlLzjSa7zGk224qO5Nviaj/JyASrxVjepoSFnHqLguT7IpAk3xbBljwTTvIaqbEfpqk40/zfv9NTvrqVE4nvZ8gAMg9rBpG+1sGBx4gHt8wzmf05J/BzYGS2dwJSFnub9lC+zt7DjujsYcdw6/p4t2JObNXLiWb0LNLiO1HlN0QRnpPLMpzNXVSXCCQcUqBDS6rzWOhXANRtiPjTEW4IWCx1B4c24GE8mKkAqBhPAcSFFymZimXRvQ2l196g5xVzuiTzRtyLPu2Xf+eXUG//Q7+UBnc/gcol8CpFXwB3P0XALvR3UbkRHcq5cbga6Fo85ZPakkB33iVHSftsckVH/mUyJxjHchCwvMytImcr2mMVqFZDBJJalyIEWrhnP6iY8XoXRmcdxnZa7FbWY7g5MRyUwZ9xV9amrNRx8mDYMtwgTBb450/TkyHMNBA0LHALoqXT+nZT87QyNP36k07yh3atzmP1giYSD7sa5DF7AYc27MVFOCFk6ExtwYyYmZGxXd+GpxRvHs/KtKwYTY3Wv5CSusLQk1MK5ltxS9F+mR9SMF0cVopLHQNVFgFmoKIf17p0jnBG3XvJsLn2L3U5F+OkmIUtFwd7a7CY6MQ9UsFlBCNoQDdgOAKfsrZ0IDpy3KVL41JrndmXkKlEamw9wfXmIfktSI/FjaZxtnc1YgBpfy04FQ7ihaBRgIiRFM1j/YM9ReWx/sFcKYWsf0CXMdjtQjDtglgfGaVl7wbEAtD7mYMlp7142mdM0mj9b1JKuj51hEGmz+3ucthHiMRdiiIJeoGEAJjzQjRrgYSrd1wDv9oiuqqTSEK/EUnWiAFM3my6pVLmDvHwsNzv+ofviC1517dgPqdKZG6VyL9VafnUoq9EWVu1sNV5tAALdTEUVEpCVCk4ulvLSDK/lpG6IBB0tb5LS0ns66jzv/ksj2khgck/RAuHfKZSrHiaDRdPL4969eLzPhrNNzNcbrLFpzWcK+Y0Z09G1/P9ScytAw5gbUbBEfjkRHCVuX16RbR0cHayJVqyajNd26wW82qVm/pIU/UUueUHVs57acv9bNyr+eDVrpYHAF+SiQP0+84rgBLAraKxPLEtOF/qR7Z0Z3RAzry3Htst3H+xrzXp5NpFe9ykDvn9Ma0L7W9QAuIP+9tDQKNBcXAEKhHcbBvXLVp3ANtHmIvbTGfgKZQrdbdr2TsVcpyneNmMZzqpnD2N5sxzIGVf/91Mp3LxhuGmdWPJifVBi8+JzNJAQSTAVRBEuhWLP1qK/WecWrcgnIEdndwG2dXvbA0ek9eQppnfetPmdtDENX/s6n8aL+PyWb5M4WWmW3lMX+5WKt6uBTC4Orb7M1jG4L1zwa94r6a4CT0gSH+kceJaCOLXcRduxO9XEz/UYDotrBqA07JGj2MEmNEjXbnIdMyVL+phVx1uNd17eQsCoDC9j2hmvoR7DBGFkVS+Aw1u913iKjdnR+JGr/UbNhOtnR1dnJ3A6XfXxo8QacbPevEF1Jjd15rP6L+8Cfd03DDSr7ZucHfhoJqyvBBgArgfhHssESPAx8lBrEfY6NXpvXm+5fese+Zul/rolQxUcD5/fbTGAHAO7gZ4CjfUJTzZjLM0b/br3tyl+c6Nv4uot1vWXhXLV6f7jR1oqjTo5p9+F4kFIOc+UM5yXs4ZBwzNWzCKqDwxxrLujIAdll3/O8tOH3x0985IS7VkYSPziW4XOc/ekDRHsp15N2xnIK0wk6KaoRFITewf2yoai4LtViPazhRHtiOqdWcHdYftNvzOdqPPFJ9YM91LO1LOQlfvntdbTtstQbLdEiTb/SmDBhiHjGgcZRwZp5s7OaVZ1gEXLT3c1sIs6kCTP8jCL/MWPBZ+26+jPgrnsQKdGBmsi0HsIQO0esR2LyfpxxIBAWgfsyxbRPbDXFr86odiSiu+mf4Z0I6CAqaICqh25CE5BJg8pNvbv2Q7vJf/27+gu5A6bf+C4tJAkzCBN10GNImwmqA8G9DUi8C7KAU09WY1QTEgoEmU1QSlSICmPgTewBXQJEbgvV4ENImzmqDLdECTBKsJWikFmiTZvwsy3wea+rKaoKkc0NSPwHs5FWiSYjVNkCZ/WacwUeNIbmHj27nvrwBNf7GaqqMbbuQqZqtHql80jRrCaAGapFlNDz5cGVw7QE87cohBYsTtL/VAU39W06pow0GBR4ZR9i6I+rhkS2Ec0DSA1aSau6XmCWG9+vb4uuoxOY2HgaaBrKa79+dNz7t3XyNj9M1mPf01F4CmQawmy6t61uaMweq7JR7KHpAZKwM0DWY17b14fvpTmfu0gyfoEQXbS78DTUMIvLMtrl2DQwkwuwZ179w6vuTLCH3/OfNzrj76lMCjo3R312AuXKfEzTI+1ENQYhGlY4mvXHasJ52YdEdnUUmVEgrr+HTEdfwFHcsjeXCa4/TYKWhHFNixU6bxSMdOvY3j97FTE/svcG7xV9aINPONWpM2lpNXwObYKcN4pEM8FsTj4Oyc4uJiARw7NfkUY8+7AURKbLHRuPBDopxLiVgdOzUJ0TpD8GAdgRw7VXQ7ZIHVsQ16AcOnPn/rdp+z/ovVsVPCiMYBogn2xiFgeeyU6tRqlbONo/QjdBbq0C/ocR6wiPWxU3fiEA90w8Z4+Dx2augFieTH9aPVc3PE50WNE4JkiQI/dioH0XIxmFsO/BDfjp2qvVuyVG1ykfaJbIJn1iZdzowOq2OnmDkE7LFTQCBk5an5BJg89d907BR0qojxsVN18UjHTiXHC+bYqcl6BG8h0lB62EtZV8+Z8rWoHzsFXT5E4SilS/FIRykVx/Pr2Klv0xp6G+5Q0w2c+2Djypv5t1E/dgoaI1DQKhlRq32CzUOxPnaqAC6M4frYKR7VL3bdERrSun7sFLQ4hkIB6TicuqajhdeEHZMmF8U7vJu7WYzCWTXoOMqivTDd9WJGkdCvUzCAYcINmJhYeoB/ZbiBNyCusmQW0NuJJXsPd/aZU6xfxGp3J1pbOhGtgNnmWhcXB3vw2CpnoBH4fPst1zqBHwX30TuBfIADcyRiXlQmqtuBRwMxJ0FL6cuJLmxGk7kFwNnW1oHRsQEL/BmPdc5ER3BjdteKLRtfLGqeFiSvkUqY8bZ38Q5/RNm4iy2QH+hizFAD8jSZ05XAiMJrATwVGJlkKiq7A1P1V2fKCO7VZz0Q7/0QeT/mvRlTo+4PeI7cChXOI756M+/Bg29mXv5dVFV4P3XUeMZN/ciRZifHLTx29Q+j6lRAITFQoZ28oupIIOYWcir0u6qHHIc/spIeUDOWYHAQ48gzwS5BifHamcLTMrYdfaqK6fIPqIpdBZIqgN/gZmbWtLA7hY+ZOquIxm7g9BnsxZzWsnfvHBeYs+0t4Cyb92bVMDHVghmHhtIz59oSFOXInBMyCXrHjbhJlk5t/DBd9Skk03mdwsR0faycnR0Ylp3CZHcmZqMMwI3E4JDAriXarwLDO8KC6vXBU3rrRWdpBgZ9vntr16hCyEko4P24g1D7ZdTny/msKMMT6/LOY0aZbi0oyxuzzrFjAVndESYhN5IR7pdCP/xq9KAYNxrnyf59WDfmLn+zG/ghDjPYwIojAxFH+DfiTGgfpX6N4N1Rp3/qubiQ6Sc141+eixT725eTJhfv2LnBTQX+auKHQsw+DasQ0KdZeVshASZv0yRNUvw5/xop9b7skbqYdzM42RcmnubiDBKk3DmbGIzOf/9agLL/9Xkb1oDnYQfknbZ2xI6jMdrPAuhauiQtm3KuSO8jye9hZtq8DfUzYZ+Wm9Tp1NhFfb2KAAWrAH0t1cGSFkRfaUBfhUquNKmb20kH/XosEEpt14Lnq2edc1kQ23aYsl/07zyhMS2cX3UuZgoeOsTrxIhfLb9LoaCB8Q9TKDtAPTtQvdHqPLzzNTAxlanqVgrVt7372jBs3Ri880v9gMSWknxTUvSDaaPXUIMTOZMlDeYHuZMl1nW0eyf4/tWVSO/vVYl1stThmd1IlMBHtne2sbdu78+8v4gsiuG7ZU2B3qFhhnc/eVRrc/oq+wbcvtrRwg9jKCAa49YZXKQ/hO6sBynrOTl7AMOXpTVYmVaYOh+YsoL8uRJx2nxrO2c3GyXi9Pnurm4ezH/wzlZ1Di4yLM0sInm/uXZH7pof52ZIcfAXGHmsd+DuNp2a+GGsgDNIxlLFxliQnsOsu3QnWx38axnBaa2blTtCD7rwyDjEXKVN47DvwEdXt86p+ZOp8h+aIzuXFchlgDSjlgv6y600aavsXpbKiuQI2ZZE44tv188O096u8/jL9TDDBEynvaAAkZUsAW7xEAAMLd3KRNlDmbMjkFDx/lrqq6SQiNfimkmG2ywUPN2LIEMZ84M8hrL26/wQoPwMggBphmfYiWYR4d9FO6kEm6jt6P9OP1o8y9VybtEogdFOU89XItBOwdVcmSXKtJP9INXqzfZ9dVLuvA2jzfrZHwe0ExGUBHbtuPYcJkGfE9m4f/++AGgn++Kv2o1L02lJEpS5Jd+cTHBBO3mfQ7LOVDxYRyC00yPZvb0+HzxATrjtGtqyZMZbXNBOD6uRjANEE+yNQ8CSdvK+2XYqU/UmNUA35I5q/dbZuKKd1BCN13QW62QXR7TTu7mizfExa/WjbqS7LXTd+BJj2inuLJLlDDC3HF9pp3Opt96aZtZTS4aWjVZzmtOIC9qJmUPA0k5AIGTlqcWEHkA7aYwclzVGqpdm8Rmr0Ny3G19hTDsRL1Qi0E4uNbDFUlRpp2TzzaP2zVam+DwbL3Si/zMD1Gkn6NwcBYJHGlQOluApr+EqlKJEO8k+UtlhKJSqkWEip/Z+xqso1GknaIxAQSvAjxC0ItYINOZiTTuVwIUxXNNO0El3J9oJGtK6TjtdyboeGHryIvVQxEiRWKu6nyjQTifg1P2PdvpHtNOh4raGIwcOkwscRfccTHuvLDDayfs7Eu3k/Y0ftJOnmOTa12dHa+blj/Bc3H9rLIq0E7HV+sOHGYo6J1c/Kw15Nu4UCrSTy3ckOIT4XSC0Uy8Z4fQnrlRa8oBy5z4id6owp51qvyGpAvgNbmZmWNFOyx69WtBW2KKXmZ4immZtjx/aaSqi6R624mK5j++0k2GrBs1X25W+q+kN5eTrIw8wpp2YUQYWVwGijMBop2tiG4ZPUV9DPzh6YhGl4k4IDmgnZrCBFQcINoKjnZ5sFHntVZSsEWJ6++GPYc2iOKGdpiIqBPRpVt52ktAjaKcZdQzq/EXi2r4FhwPGbxoew3faqfwnEu3k8kNwtJPHq14uq5rHqKVVaGRT7LfGoU47QQMjCrRT9k8kZsHiJ8q0082/Di+S2qVKT2yYoWhSkpCJOe0kjfj+5T+wTpb4RTtJpnm0Hh1LIIfcD9nywVDuAC5oJ6CzIhiDiI0xMKedys/Wa57Iq1IrVrV6f/7arXic0E61bUjG8m7DQ8/hJ+009oWj2qrKLaSwkoNDJhDGQb/4QNC0EzOQw9JOmj/Rpp0s9r2Mr18xUi+579hlknpzjmFOOz38gUQ7AaEFZdopQFNfIXDsFXpoxNwBls90J2JOO4khCZB2sI2daJYS/l20k9vtiNTiAbP1D3889c188tEnAqOdLgghne30ncDvs52aWyfu9W5bpuNdYqvgWjrsDQ5opzNCSCdlRAnh4ICaGzduCIB2sml61j9H/xA5zML0zrX5heK4oJ08EK1DxYN1BEI7rZ+8fvtgkySST6WJ17zqjVRc0E7jEI0DRBPsjUPAknbau5jcqkeo0U5YJjV0+sT4y7iina4RkIyXgY3x8Ek7OdSpi05+Ea1/KCrG9YmnCNa0ky+i5ZZhbjm+0k52Sz8NnqIXrF0asqLJTjH7LS5oJ2YOAUs7AYGQlaeWEXoA7bTEx6lAadcheiTZ6mDOz/d9MKadzggjne3kICyYs53cyR7rW5OUKUfmD/nWkHfxBOq0E3RujgLBc0IY6byiMGF+ne1kf89Id+ZQX1JxsMiVqHopEdRpJ2iMQEErB0StNIT/r852KocLY7imnaCT7k60EzSkdZ120nAZb1ggYaS7/9KtRj/6bAUUaKdTcOr+Rzv9I9qp7K1ItcanCzo7+6ncE6LrLhYY7XRhRBUC7UQd0a0vyusi7aRdSZ5iHfKeVDS5qGwk6cBZFGmnT8bWMk5NaVpltNyM9xM+/SlDCsIhZ0CFYOGQqBFcIxA/aCezb6cvPXvsSY6IeJGXe3hoG+a0kweiKoDf4GZmhhXt5PpArf8pGS29nBlW971iTyfihnYah2i678MxMZ3AaacC7yGjWupH6GzbdOAyafv0dIxpJ2aUgcVVgCgjMNrJYq/Yx/BN8poxo5cEFj5SmIUD2skDURwqRBy+0k73DlWcnFX9iBrglX2rzJashBPaaRyiQkCfZuVtFYQeQTs17XNgtAi5qUWkjPaLvxW9n++0k8OoKgTa6cxI2Ak86rRT0zXlhLqJ0lohn91zLg6lTUOddoIGRhRoJxtQPVhmYd6obqVQv6ed1qz+Oqu4xlJt/xu5c0qRWw5jTjsNQnz/1yOxTpb4RTutlV9f7vn+Ksn/o5GHiMTfTrignYDOimCMKGyMgTntZGoyk6p4N0rjiHyO4iZay2qc0E4eiMai4qLn8JN26mt2a3uvFfJqh84lbf1R2m8wxrQTM5DD0U7pyqO6l6X+nnY6O6O/tKh7klqO8UoPv5lfIjGnnb6PrEKgnYDQgjLtVBnYssahzZCck/JGUXTK6XWY007BSAKYmo9kJ5qnCf8u2knaaJLi/OjnmntLe2cfORuiJDDayWw0Eu0UIMtv2mnoMerJaoV3tJSzcns2BF79jAPayWA00tqxwmgcIBuXL18WAO209lRNeNJic1pGZu2X4V4r8UE7ERCtc0sWB9YRCO104eu1trdFo/RSRb6cdntmVocL2ilbFsk4AXgwDgFL2ulYPvnJNQ0PjZA1Igs2Wiym4Ip2skA0nio2xsMn7WTm3yqZuE2TfqyELN7i8LgFY9pJGtFyjaOwthxfaae+dgMmrKnfrhE9puKijuLCg7ignZg5BCztBARCVp56htADaKe/vrvXvCVH6MdPMl0hveClHsa0kwERiXZqGS0Y2mnMCuGTbkPGqR//0TdA69q6CtRpJ+jcHAWCh0JEIniIRH7RTtSSfotHWIjopn8O8gnLjXyEOu0EjREoaNUyGkmrWsHOErCmnSrhwhiuaSfopLsT7QQNaV2nndY0vsnrsySc4lNmlnqnb8lSFGinKjh1/6Od/hHtdKCp16GrrR/puaPf7zHav3qQwGgns1lItNMtFX7QTkeeejrEfKapZ/gdfpGn8WwFirTToo0PP+h7bFNLtJim4rmT9AgF2slgFhIcojBLILTTtMrTEyVlh6gHBUy1eLhe5gfmtBMBURXAb3AzM8OKdprS77LP368TSQHVuxNCv9jL4YZ2ylZBMl0ANqYTOO0kkZGVqTKzTd//wfYXuUa9lmFMOzGjDCyuAkQZgdFO2XU+WuMZLzSP5rb2u3MnKwIHtBMBURwg2AiOdmruo2oXpPdOs2SOXq1jpNlFnNBOzD4NqxDQp1l521lCj6CdzKYOySuye6IfPd4qzjjI+DrfaacWVSTayUBVcLTTDLE6U5eXfrT0g0IpTyRrGlGnnaCBEQXaqUkViVmoVkWZdjK5u1jmcOU43WiD6CPZS7dex5x2ikN8fy9VrJMlftFORq16VQpz6yhxaxgzJe1DKnFBOxkgGkMBG2NgTju9Mh9/9/HlMPpOJw+/XhMfz8AJ7URANNatWXjoOfyknfQWid0blzmGkn15otQzx3fKGNNOzEAOSzsVq6JNO4V4peUMMEjUK2me+lexf7Mj5rRTAFsAnrSTgSratFNx+cYr2+kSOoErI9s0lK4NwZx2GokkgOnTWexEs5rw76Kdgs2O6VfO6Kt/0q1hY6ij1XCB0U5P5iDRToPm8Jt2Iu5X1SoJ2UzKi4rRzz6z+QcOaKf6OUhrx3lzcIBsnD17VgC0U9Xuxy0Dlk3Rz6Y8+6S67zkFF7RTEKJ1bPBgHYHQTilXTBRNtLZqRvcOqlqm1K8eF7TTPETjDMKDcQhY0k5bD2pWuQ+M0A+VeJDb+DVnC65op9ezkYx3ZjbWyS6OaCe7Cy8mvPAN1d62aLHnqzFORhjTTlGIlvPA3HJ8pZ0Sbj7+mLHwJOWIXuYk0UFT7uKCdmLmELC0ExAIWXnqOUIPoJ2WnBVyqlmUTc2ZnLHCdaWsF8a0U/1cJNrJd65gaKeT1NS+4r0e6u+WejPkxCPz6ajTTtC5OQoEz7W5SARPxlx+0U6bRe2rffpM0c2KI01RPrvEAnXaCRojUNDKF1GrZXP/r2in83BhDNe0E3TS3flsJ0hI6zrtNM6qWjoqq1EtpXrk1Ju3pIJRoJ1q4NT9j3b6R7RTetUH+TJ/FWryy3iL+OvahQKjnVyMkGinJkN+0E6mSX+lX05JomeJuw7r18eJhCLt9IFQqH715lvNHSO0NpTWPJ+EAu1kZ4QEh6gZCYR2Kv22Wzzbr49WSXKfJTGP3F9gTjvJIKoC+A1uZmZY0U4umzZsLHIN0j7kkHLo7895gbihnaoNkUwXh43pBE47TfGKuOQeZUg5+e6URngybRzGtBMzysDiKkCUERjt9O7FwJgVy5zIB2MbZScNGKiLA9pJBlEcINgIjnYSPdE7LyZzot5x74iCigbdozihnZh9GlYhoE+z8rYLhB5BO90Tela8evJdUqDXng1h71Sm8Z12kjZBop3sjAVHOwX2URzuuzNBI1xZwX/HWjlT1GknaGBEgXYSM0FiFh4ao0w7rbV5f3KudQ1lT0XOuqwWOTfMaadCY6T3DzbGOlniF+1k8frFCucpWdqZE2YGrTj2yBMXtJMdojHUsDEG5rST4pQBxcsSbUjRUY0blHs7peCEdpJBNFaTER56Dj9ppxup48RKb9ZQsuRCT1n+eEnHmHZiBnJY2qnOGG3aKbZ3X0nVC8lqh0e3BB0YfeEE5rRTnDES7WRnjDbttKh1IyGpbjMlXPneYtnaTymY004zkQQwbTNiJ5oXCf8u2ikrK26h0QkH3W1ZEtp3Sj5pCYx2+m6KRDspmfKbdnKyOTBvwdRz5JRJDZty4ietwQHt9NEUae34gikOkI2ysjIB0E7So5embp5QTwuPWSmndsx/Gy5opyRE62zCg3UEQjv9EHpWqV61XW/vrvV9pn03jMYF7WSMaBwlPBiHgCXtZE2IHaUzPIaSulTt6qqD5lK4op16IRqv3gTrZBdHtNOGmELL6Jof2gVV5+O+JEz5jjHtlGeCZLkgzC3HV9qJcNtpUl2WHTngVabiAH9Fe1zQTswcApZ2AgIhK0+9ROgBtJNh8WSSknQNbUe578hgz1ENGNNOHxcj0U5RiwVDOw0JFV14b+Rk/VD56j6E4CwT1Gkn6NwcBYLn9WIkgufMYn7RTgqGZvvG5KXQct0uVi8RHuWCOu0EjREoaBWFqJXH4v8r2ukyXBjDNe0EnXR3op2gIa3rtFPwz0cDX1ygqu98cG3/uWdFmijQTrWoqdtXgOpusl+outWxWGvv6wf2T0ReqHdSN1+o7mq8012Sz3RJ7T7iok5AkzCraazqlJyR1YGapasXqBkNTw8HmkRYTeE5L09d6OdOjjxyZGfhooYBQFMvVtPtAT5GYxYlaJd+P3tCLWo+N5zWG85c2yadUUqQfqS5bdNpaZVVac9QMNcVOHP9B6f9Izhtco3RKMeEYxol861l28LHyQgMTvN1RoLTejnzA05zfdrPYv5hV92IPOrH1ZstX6EIp83ZZr6AQrDWypJ8uX3V7vFpKMBpm5yRWB5jZ4HAaSuHGMlufBlJLhCLychooJZgDqcpIaoC+A1uJtJYwWkl2tm5JS/DaDGzVBeu3tPWjBs4rd4JyXR5TrhYneU7nHYvsnn9lY0LtGPSaZst37/fhzGcxowysHQREGUEBqddCha/KyZiTd5vSNIjqxdyJnfYwGlKiOL0chYgnDbbRXxP7t4Ktb3eq67Vz1E2xwmcxuzTsAoBfZqVt9URegScttw+k67ff7Z+vNnptMNjqnbyHU5TckWC03xdBAenXc12rxgUGKKe6m1+4qB0HmcyjwacBg2MKMBp41yREJPvLijDaTUafUfKLQnWy8vbneXl+Woo5nDaNRek989wwTpZ4hecdnCa+fqnx7T1gqyT8xPLV3B+9zJWcJovojGWYWMMzOG0fP3alHSfeO2suOnzzsZJquIETpuJaKy+uOg5/ITT6pN/LE852KYWNyN1UtbSvJQ/mSqjgCYxAzksnPbWBW047XV+aa1I9htKVN6UmkSfwmTM4bQTLkhwmq8L2nDatM3SFyZtLSX5Sy1MJFerQub9GMBpBkgCmA5zYSeaVwn/Ljjt9KMh6VZfd2ifPOmrZ2q9YrnA4DQZdyQ4jeLGbzhti/zyrKDvd0g7HS8VfC5cuAkHcJq0O9JSf6MbDgibwsJCAcBp2268sUh9dY4W2udzxiupOM6v18IKTit3Q7JOJB6sIxA4TUfZKHSDiLJGgEr5OFW6+mlcwGkuiMah4ME4BCzhtC/XVpV5XWtUD5x54FPvFV8+4ApOIyIar8UV62QXR3DaPdE1pBuXYvTjH9PTiBJFnGfHCB5Oq3VFslwq5pbjK5z2fNlEsVRLUXLkwzEpKqJ7kv+cbEEBTmPmELBwGhAIWXnqNUIPgNPGihuJKcruouTcvDaYMYCggzGcJu2BBKcVugsGTiM/dn20WDVDr6T4Y7TdMqsc1OE06NwcBeBKzAMJuHrozi84TXJSX5L2oVua+SLZFXZqsfdRh9OgMQIFrQrdkbQKdv+/gtOuw4UxXMNp0El3J3wKGtK6DqcZEFY80Y9dQkuj97+sEmsljQLtdANO3f9op39EO518lLz5Y/A23dLZ47OW6Ut8EBjtdM0PiXYK8+MH7VQ5/PkWcRETWvy6OwvWictPQpF2kslpLtpl5a9V5PPqs/uPJEkUaKdaPyQ45ISfQGiniiFSLkdKe1EDPk7/MUzKbzDmtFMqoiqA3+BmZoYV7TRJ+NKP5a1F5ILH80oVjq+vww3t5I1oOgdsTCdw2inb1c0z+roYNedDhOT9D7o0jGknZpSBxVWAKCMw2ulHWcTTRcvv6heU+L3cdLJPDA5op1REccL8BEg7vWGs9tpikk8O8PpKSu3zdSNOaCdvRIWAPs3K224SegTtlCE3K/ev8W0axwJ35SvukO/Pd9op1R+JdjL2FxztlKA11SrwjS8llhx6uOamliLqtBM0MKJAOyX5Ix5F5Y8y7bT1td7W2ydVKamvlhYdcZqB/VFcmxDf384f62SJX7STzsfXs0SPL9c9vkTNSSNN/B4uaCdjRGOoYWMMzGmnLY4DLWouNmmnp5upjFj+1xec0E5KiMaSwUXP4SftdH9G47ZZRfG6BTr0mqLoob4Y007MQA5HO5kE+qNNOzGuKt7MFF5HTezd+7CIe44w5rSTC1sAnrSTsT/atNM182ULy1ef1z5uMMjQSuyJIua00xwkAdJk/dmJ5i3Cv4t20h0oXaEfYUJP3krJXfci9qbAaKeYHUi0k8oOftNOSwylTqtHDyMH5+yQZ7zPjccB7XRwB9Lasf8OHCAb2dnZAqCdRvrK3pL1NqXGeprFtFVEVuKCdnJDtM4KPFhHILRTrOP1Ph+sHfUSZSfaHHPULsMF7aSLaBwVPBiHgCXttHtB886k2VZaAbuq6s62jYjCFe0kh2g8KWyMh0/aaWxTYrNHlSF5/1ylmnLxE+8xpp1a/ZEs9wwX0xS+0U4OS530H5gaa6Y8nDqpfsP4l7ignZg5BCztBARCVp56m9ADaCdPGVlxxvE39CBt/xvNmyRlMKadhgcg0U5vuVNavtBO9mXnfux4tZZWumeAz6u0kU9Qp52gc3MUCJ4hAUgEj3AAv2inC0SlsqNnX6vvC30TT3mjMA512gkaI1DQ6u0OJK3uCHa0xJp2ugMXxnBNO0En3Z1oJ2hI6zrtdOV0XerFWd5qmaOi+2x4L9OKAu10F07d/2inf0Q72R2Wi6/1XK0fvGT90g8J1o8FRjvJhyHRTs9C+UE79Tt9d//roEJ6jH5CevDhTcEo0k5+k0sMhhmv1k7PcZcvrT3thALtJBeGBIdIhQmEdoo933u75+tF9OioXs3HnOQ8MaedWkORVAH8BjczM6xop+HD9BZG7zPWPrT87WXDwFMOuKGd6hBNV4qN6QROOy0RDqv+66Aw/eA7/y2h2s1UjGknZpSBxVWAKCMw2ml3YP++lA3yugGRUbr0hPNfcEA7MYMNrDhAsBEc7XT+r9efJSqLSAXFab4zJmzNwgntVIeoENCnWXlbPaFH0E7pM+6XSCuoUSNI471SpPum8Z12ag1Dop2SwwRHO5EO7HpQFLmPtF+ylTFt8sQK1GknaGBEgXb6HIbELDR0L4X6Pe30mHrdRTL1Ai0s/vNWsWXv5mBOO11CfP/iMKyTJX7RTidPkQgyux6p71zSMCz2VM55XNBOyYjG2IeNMTCnnexVqfH7/36jHVg558vb2QmrcUI7bUE01mpc9Bx+0k5W4rQtyxTuUYOnl98t01zogzHtxAzksLTT3W5mqb+nnU6VHBaaliKhd8xnDOmHWJk25rRTBVsAnrRTchjatJPJq4VnA+/b6JTtX7tYbUxZMea0UxCSAGkuYexE8x7h30U7Td941enqhXi1sskRL+PWPBwrMNqpaT8S7RSwn9+0k9Jj6zEJcb104o9ta/25WlsDB7TT6/1Ia8e39uMA2UhNTRUA7XRgj1KT1ixDtb3yezxJC0JP4oJ2OoNonWw8WEcgtFOfQ7QxSjEzdXyd5b5a71m6ARe0UxSicQLwYBwClrRTfcXS1J87bOkJG4Ofbzk77hWuaCcPRONZYGM8fNJODTGxRy1U36jFHb8eLhWh7YYx7URFtJwq5pbjK+30vbXcfqxGsGaMVL/JxgOLz+KCdmLmELC0ExAIWXnqfUIPoJ1qU/rppnltp4amf+2rHHLBAGPaySEciXZSCxcM7eQ2Xu64SbK3bkJw6WzxiT5PUaedoHNzFAgeu3Akgsc4nF+009y5FzZv7fVSK/ToBNc2ofuuqNNO0BiBglZqiFophf9f0U4P4MIYrmkn6KS7E+0EDWldp53mSN2aHdhspxORoXG2gUSbggLt9BBO3f9op39EO62KNhwUeGQYZe+CqI9LthTGCYx22pCARDvNSeAH7aQa/vCzPmkKbWfgscJlYseMUKSd7mwNHpPXkKaZ33rT5nbQxDUo0E6eCUhwiFWCQGinJv/VYr77v6jnOpRtulxuPx5z2omOqArgN7iZmWFFO2lMrL2VtXkmJc85abfbtnVrcEM7ySOabgA2phM47TR/zgqipexCndC1KxclzmDsx5h2YkYZWFwFiDICo50mjb8+YtkAIe1SskxBxWjyVxzQTnREceYkCJB2sjyUcal4zALqUV/d8V8a64g4oZ3kERUC+jQrb3tE6BG0k2rulponhPXq2+PrqsfkNB7mO+1ET0SinVq50yS+0U51e9L9lq5xou0Pay1ctk9HGnXaCRoYUaCddBORmAWVRJRppwDzvaT+ymtoh3LCRj0K/SqEOe0kh/j+UolYJ0v8op0+T6kgbh6pQU1sNG5++uCpLy5op9YEJGM8w0f6I3DaSf/HiieU3X9pputTfI6bH96IE9qpDtFYpZhPM/hNO53Zk2MkN1SNliA6xMj99VB7jGknZiCHpZ2mJKJNOy1WMI4RCSzRPNZY0eDlttQPc9ppCFsAnrRTazcz0d/TTtHP6/uYmqdRwj/kOU0m3ZiAOe30MAGJdjrTkWg2EP5dtNPd+/Om5927r5Ex+maznv6aCwKjnTSSkGin+kR+0055ay7Jnig/pB7xvWjqkvDmDTigndSSkNaOlZJwgGzEx8cLgHaiyovd+qSxTC9YbmCvNwcjSnBBO8kgWqcXHqwjENqpok7qneZlDe2oVSseJBY/9sAF7dSUiGScemxmGjiinbwa6dH3Gq5r7FbNW7k8rD8VV7RTNaLx8jCfJuKIdvK7kVtFl63XSZnvr2PgY5qAMe0Uh2i5IMwtx1faiVyyvvys8lPtPdahnk2R87JwQTsxcwhY2gkIhKw89TGhB9BOllf1rM0Zg9V3SzyUPSAzFuuzncqTkGinsCTB0E6rfmQVL194jbS9YfSTjBPbpqFOO0Hn5igQPCeSkAie1CR+0U7qFz5pazTF07abNdUfHzGhN+q0EzRGoKBVGKJW3oLNQ7GmnZ7AhTFc007QSXcn2gka0rpOO+29eH76U5n7tIMn6BEF20u/o0A7PYVTl2g7tiBgdyA59HQG9cDXIs6qaW9DhoPlek51YZaF4LrwQBJxnb0bg+gG3oklIO898C1tTjKLJ2rG3Ah6NtVtiByPB+F+6d9HuHO1+0P9c/UOvnXNvuWeMuIPe20k+EUW7yrbx2VvrkwJGBsU3lWyJH+Ge8mXSuww6ifWTEk20u//4dt5P9xKTh1chSC50mB2KvQc95J/NPl6akegN81nwIsar+dFI3Ar+YWpSJJnTGVL3oh7yUdmWx0O1D1F2nNP3GDz/vJRuJVcjIYkeSOVLfkL3Eu+XkfhkoHvXn2/S1K2ah/Fs3Er+Xc7JMnr7diSv8S95DrybnQp8RGk7Ih+tqt9n6XiVvKgbUiSb9rGlvwV7iXf4CB31HO1gmapxKlr5iu/jsSt5EnBSJKHBbMlf417yW+3rL0qlq9O9xs70FRp0M1JuJW8KQZJ8ocxbMnfwEk+I49OnqNoTinN8qbtbMq6CSmIAGK7OTsQmTSnO/caY28YoVU0vYCpmHU7LchauWfdqh3YYm4dWOPkDPwNmPuwNip0bf3RRW1R/u595RoppeMuHitvakZ6Yh4lHI72LirtDUyis82AdPwMmQf+TwS3rptW8gH/t5qft2SW3CvN8GdG8dYrGcko4v+vvW2/WKQdphwXfahhJxoi9Ie+6AIoFAwq1EQC/gFVqKVdIa6aKluiLqJ/Y9Q5fYi19kQH/WsyiPEo81RxjXZkgbP0EM2T1VKk25fKNDnJABhHYV9Hu+Jans8SisirHkMEWpsWV3KxId0UavhiBrhSylSIs9/xVmjZ+5XNRktNtJIeua3PiPUv5VzZZt2Me2Wb3cAPjQwWI2kEdSbhf6AREwVjUd+ATr/zotarDcV6V1vJkRufTSmtqfrJ2RfBm3ErxLrMD32kTZH0cTFhVwfewgX+iW1DZTKJIpr55KZvDFlbzsAvSbV394DdegZXsh9FY1i6r3Vr3/rVziq1R3cH4G5dC+7K/Ye9SywbS81XIs0ptVl2HvapuHHlTo1dxZXBnaBLAR0rAB0fQnV0Ac9NWMIV1ruJK4uTLd0ZTAF4vu9xvYkfD5w5rb2LsWDkvWGinF/J1wt8Ja4Xbb/6u/gODXp/yiYDUhFBqSKB+F7OazcMIBVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auVasezqtUp4cGtuboSJm7juASYAD767p5eLG6KgXMyvNZpM5Vy8ETb5JF7B0AncYcOkUkM/UidU137G6ElfX7DXtI0nqbC0lUUXljlDW2NMiVHsrdlt8Y/TIldNMqVmie+1/NEpwQkgsSq6dz+56vyVqM9oztXZSnAimJIxu52W+6iKF6WOdSelXNUdeORUvDf9k3MBA59ZuZBxxRoDSJ3h1XtAO5YbdysmIHTmZLW85eJ8UcM2V1EZ21zwQ7Wxwgzr3jw7Z42+KZgEI5m3EStG4XLOxXbBuLXsP04D4CygaPKE7/dKqR+W0QJ0IGeNUowJlJ0w3G2Tns9SQ5tVRwTEUUIPVUZsIMGNoeOOn6MkmQdSi8/qntH/Gca4lSPwKT9yr3nAz1CG/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKXJaMUxKpY5XiOdgHtM7v2Vv9q6KGsqOE6sBGS9xWtRmwI62fLKfh07vNirjezoJKED9lSu1as+zMs6NuyeEdnmXRwfYqZTkHKErvZU8S67XQimXVKf6c9cPUes/fqvG5vbVO8RKhPXKH47lNZPcWBt+/MwH/d34WPgL62ADuFmb2nlwLsbtDbf36VrWKkTXa2SOfuBO2cElzBlfZRI4rKGEImrFwhBQgZ0qPzTCgNgTQJozakkHommAzjqr6jspJEQWhoNVX3rN6FvvN4ekZ29RD4nZsNoRObWiPxbjaBhCAWNAJ9G0Ii4vJLlgB2OhBRVB7XDRGA8/RUAeAfU6+GDpmiOpx7Q9RPLNs7lPOJPtP023AGVdR3tgGqQz/KVFhI4MYHocC2PqRIroDbDBdQhDbs1Bsy5rB7/9+OyrOp1nAdKCpF5r7/3b8dyeEhJkGhv4ijTsSgervIdzwV6IwYwf7ZhZqhMEskRxLxcHOyt4Q8gCM5JifQespcackPN++mkO3sh79AVl+2qLTr4NYgtiMWVBJmUSrASAw5uLNXf/yPV25MVgSs/gfUL3cEk1NnBAXh+MGoAncKWATwFezMd752fV01V7InpSZpHDgYdTv2aoSKAvUBwpigHCRsa1BQf/pEpJM0BKRxdnJ0YTh4CN8gg0/ZSycb1m389BU/1ze6tX0/zCiKnk0YfFKqZuxT2Hbjn8J0b0baEWEkl81AHQmlnS3zsyaHo2O19YWN9/chJ407vr9+6SwWjUER4CfX/Tz3Z/y8en3nF6pui7hGhH5UJN7e/wJH/uzRD/f9zT/Z/kQdhDWnFA/SKprzYSv458zVG/t84oAri/196sv+XXz/hbWYsTTrxd9r160+FKDjyf40hVRD/b+nJ/k8bP/io5YdzWsE38u+OsHhch5H/OyhD/f9rT/Z/YarLUMtPmuQTtspZm648JODI/6unQf2/tSf7/weXA9EFS/LVst/XLf75Tm4yRv6fpAv1/2892f+HGL4MeCtXpF6mW+Y+Jcl2L478n0CH+v/3nuz/Glu3vwj84akZX3zL5vZQhg1G/h+wCur/bT3Z/+Pjped9Eh9FyhQdWDfir003ceT/3+2h/v+jJ/u/6MuKPPKUMxqHdM301DZsXY2R/+v6QP3/Z0/2f7tXm/5e9GwgvfDM6u27GgYdxJH/990O9X9Qth7r/3dip2sqaDqqpY41fryk6qcHRv6/ZC/U/4X+ker/Ev/ffz08+AXhnUbZrgebivUSXuLI/2VDoP4v3JP9f/nUoq9EWVu1sNV5tAALdTGM/D81Gur/Ij3Z/w2kFWZSVDM0AqmJ/WNbRWNx5P9OsVD/7/WPLNG+4VngNhjwi5lzZ9g6MuBOPl2ZS+1N8Xuu7jNRsWxO//l1PJ6dx/oX8zLaqoNcUZx1R/3/fw==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAJdJREFUSEvdk4EKgCAMRPfF9gn9WZ/W6sYWmZqRG0EPRorb3SFGv4P1GwLErdw5i4eZgDBh4zsDnog59Uvbm1QbIL4mWrTmRsmZjjSpG+zJIKDbIQqDU/puuieUBo7pQWbgnR7kBs7pwWEQIQ6uBm5XY4hBVHogqWGge3fkdx+4mm4wxtPU9RsweztvDR4VQqg4CBWvQLQBFW6Sxd+iMagAAAAASUVORK5CYII=
- fb371ae8-5b99-4464-8511-d9d8f0b30abf
- true
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- true
- 20
- 06ef9e04-bc97-4227-8e5c-0baf1b521abd
- 1d74ab03-d5a6-4c43-878d-a11593a776e9
- 24f7bdca-045b-421d-96c9-07956873e094
- 2eba86c1-c323-4d98-a856-bf3a7dec3965
- 2edbebac-85ae-4867-9c11-da446ffbc094
- 56b13bf3-2c10-429e-8166-e8d6dd530880
- 59b0f9d5-da24-461d-9293-4372ce2a132e
- 6da74475-a224-46e0-b568-d112ce0c308e
- 7cbc819b-232a-4183-913f-629dcf38d672
- 8a33c936-934c-44ed-b2dd-3ea79f64eeb4
- 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f
- 8ee68260-160e-4c3c-8412-07c3b2899075
- a480cd9d-26c8-4bdf-8aae-345290e945da
- b3622dfb-344f-48e2-bbc5-3c7e97b001a7
- cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb
- d4d2a496-55de-4893-aaae-2f5c47e61e5d
- ee03b20d-1501-42ae-a84c-4acca9a161d6
- f8a7e30f-9336-45c6-897c-5deca2663077
- fa4c9def-0c2a-4b57-beb3-0eb5808c5d64
- fd26031c-119d-4d02-99eb-e98e506dbc09
- e9837f44-fe89-4576-a1ba-d864d9176564
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 45329fda-4528-406d-a823-54e35ac6ff74
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 34281050-3848-44ac-894c-a3119ffa069f
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- f9b9305d-1e20-4067-946a-b44d88604308
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
-
147
-3386
366
404
-
499
-3184
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 8a33c936-934c-44ed-b2dd-3ea79f64eeb4
- true
- Y component
- EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 3f1d8e98-725f-4789-856a-9ff9dd88ba16
- 1
-
149
-3384
338
20
-
318
-3374
- 1
- 1
- {0}
- 8
- Second item for multiplication
- b3622dfb-344f-48e2-bbc5-3c7e97b001a7
- true
- B
- EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- dcd58bba-6ec5-4665-9f5e-9748abeb09fe
- 1
-
149
-3364
338
20
-
318
-3354
- Vector {y} component
- 7cbc819b-232a-4183-913f-629dcf38d672
- true
- Y component
- SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- a8eb7470-ff2a-44f8-8106-541d81b0944c
- 1
-
149
-3344
338
20
-
318
-3334
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 6da74475-a224-46e0-b568-d112ce0c308e
- true
- B
- SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- acd1b930-6ee9-4f99-a19b-6cb48f642842
- 1
-
149
-3324
338
20
-
318
-3314
- Vector {y} component
- 8ee68260-160e-4c3c-8412-07c3b2899075
- true
- Y component
- SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 3aed1e90-8f45-4b3e-8f50-bd809fd87c29
- 1
-
149
-3304
338
20
-
318
-3294
- 1
- 1
- {0}
- 6
- Second item for multiplication
- fa4c9def-0c2a-4b57-beb3-0eb5808c5d64
- true
- B
- SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 8f4c10af-71d4-4573-9fd9-fd55b1c360a8
- 1
-
149
-3284
338
20
-
318
-3274
- Vector {y} component
- a480cd9d-26c8-4bdf-8aae-345290e945da
- true
- Y component
- FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- e3ee9ed7-1080-4a98-9406-a1760d620df4
- 1
-
149
-3264
338
20
-
318
-3254
- 1
- 1
- {0}
- 5
- Second item for multiplication
- 06ef9e04-bc97-4227-8e5c-0baf1b521abd
- true
- B
- FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 3a2cac49-3804-45c3-a1f1-9ae387f633dc
- 1
-
149
-3244
338
20
-
318
-3234
- Vector {y} component
- 2eba86c1-c323-4d98-a856-bf3a7dec3965
- true
- Y component
- FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 12d062ca-3afb-41be-a33a-cf0b30d40747
- 1
-
149
-3224
338
20
-
318
-3214
- 1
- 1
- {0}
- 4
- Second item for multiplication
- f8a7e30f-9336-45c6-897c-5deca2663077
- true
- B
- FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 4a308d7b-b922-454e-862c-36cb6bf9879c
- 1
-
149
-3204
338
20
-
318
-3194
- Vector {y} component
- cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb
- true
- Y component
- THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- b2df309f-5daa-4345-833e-d910c82a19a1
- 1
-
149
-3184
338
20
-
318
-3174
- 1
- 1
- {0}
- 3
- Second item for multiplication
- fd26031c-119d-4d02-99eb-e98e506dbc09
- true
- B
- THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- b7d3231e-4e24-4334-aeb6-4329747a1277
- 1
-
149
-3164
338
20
-
318
-3154
- Vector {y} component
- 1d74ab03-d5a6-4c43-878d-a11593a776e9
- true
- Y component
- SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- aacf07bb-5a48-481d-b1bd-7337be133f9e
- 1
-
149
-3144
338
20
-
318
-3134
- 1
- 1
- {0}
- 2
- Second item for multiplication
- ee03b20d-1501-42ae-a84c-4acca9a161d6
- true
- B
- SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 8d5c2ca0-245f-4e3f-af2c-234a7c61b647
- 1
-
149
-3124
338
20
-
318
-3114
- Vector {y} component
- 59b0f9d5-da24-461d-9293-4372ce2a132e
- true
- Y component
- FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905
- 1
-
149
-3104
338
20
-
318
-3094
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 24f7bdca-045b-421d-96c9-07956873e094
- true
- B
- FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 21aeed4b-3362-447a-b26d-c1b13691a4d9
- 1
-
149
-3084
338
20
-
318
-3074
- Vector {y} component
- 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f
- true
- Y component
- CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e
- 1
-
149
-3064
338
20
-
318
-3054
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 56b13bf3-2c10-429e-8166-e8d6dd530880
- true
- B
- CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 71bb1397-567c-4d75-8665-b4e3269ab3e7
- 1
-
149
-3044
338
20
-
318
-3034
- Number of segments
- d4d2a496-55de-4893-aaae-2f5c47e61e5d
- true
- Count
- SEGMENT NUMBER
- true
- f682b0f6-c58d-441c-aad3-7e78ad618eaa
- 1
-
149
-3024
338
20
-
318
-3014
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- 2edbebac-85ae-4867-9c11-da446ffbc094
- true
- Curve
- CURWE
- true
- 44b95cea-3f46-4b6b-b282-cdac19364d61
- 1
-
149
-3004
338
20
-
318
-2994
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 329990e8-083a-43f7-baaa-90fed18836f2
- 2
- Curve
- Curve
- false
- 0
-
724
-2788
50
24
-
757.9498
-2776.794
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- X*2+1
- Number
- Number
- false
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- 1
-
875
-3047
50
24
-
908.2197
-3035.688
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- f682b0f6-c58d-441c-aad3-7e78ad618eaa
- X*2+1
- Number
- Number
- false
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- 1
-
97
-3026
50
24
-
130.0588
-3014.15
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- Number
- Number
- false
- 0
-
725
-2744
49
24
-
757.9498
-2732.25
- 807b86e3-be8d-4970-92b5-f8cdcb45b06b
- Circle
- Create a circle defined by base plane and radius.
- true
- b62b684a-fb0c-49ce-93d5-ca3d0b737a5a
- Circle
- Circle
-
106
-1408
170
61
-
233
-1377
- Base plane of circle
- 31eb7c3c-31a6-4647-b9ae-f9b69c7b66fa
- Plane
- Plane
- false
- 0
-
108
-1406
113
37
-
164.5
-1387.5
- 1
- 1
- {0}
-
0
0
0.5
1
0
0
0
1
0
- Radius of circle
- 9bc6d8ef-2aa1-4dd2-888c-580e82c8ddd1
- Radius
- Radius
- false
- 0
-
108
-1369
113
20
-
164.5
-1359
- 1
- 1
- {0}
- 0.5
- Resulting circle
- 3af008e7-2631-4fda-baff-8cf92764a364
- Circle
- Circle
- false
- 0
-
245
-1406
29
57
-
259.5
-1377.5
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 378897eb-8264-4973-9a0a-4413d168ad73
- Divide Curve
- Divide Curve
-
824
-1240
123
64
-
878
-1208
- Curve to divide
- 4f7e161f-5641-4e1b-a832-2720623b23e0
- Curve
- Curve
- false
- fc35d6cd-8716-4f59-960b-72321690ea99
- 1
-
826
-1238
40
20
-
846
-1228
- Number of segments
- 8474d950-9802-4f4c-a8ad-de75c5a145df
- Count
- Count
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
826
-1218
40
20
-
846
-1208
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 29b144f3-3376-4784-8245-9176e17dc26b
- Kinks
- Kinks
- false
- 0
-
826
-1198
40
20
-
846
-1188
- 1
- 1
- {0}
- false
- 1
- Division points
- 0e1e9828-40bc-487b-b3b3-22134e1758eb
- Points
- Points
- false
- 0
-
890
-1238
55
20
-
917.5
-1228
- 1
- Tangent vectors at division points
- e3b72352-57a2-4fa4-98c6-4d66860142c7
- Tangents
- Tangents
- false
- 0
-
890
-1218
55
20
-
917.5
-1208
- 1
- Parameter values at division points
- aed1a17f-e8f0-482a-bab2-50082f42f967
- Parameters
- Parameters
- false
- 0
-
890
-1198
55
20
-
917.5
-1188
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2521b13e-bd87-411f-8135-7d6754f61478
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 16.0
-
515
-1156
250
20
-
515.7685
-1155.856
- 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
- Line
- Create a line between two points.
- true
- 57e66279-e327-42eb-b44c-c8b1a662be92
- Line
- Line
-
824
-1355
171
44
-
959
-1333
- Line start point
- 2995a86c-3802-448a-a71d-e01a4da30f75
- Start Point
- Start Point
- false
- 0
-
826
-1353
121
20
-
886.5
-1343
- 1
- 1
- {0}
-
0
0
0
- Line end point
- a41e7bc8-b167-4f62-af84-bfa44f655bc3
- End Point
- End Point
- false
- 0e1e9828-40bc-487b-b3b3-22134e1758eb
- 1
-
826
-1333
121
20
-
886.5
-1323
- Line segment
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- Line
- Line
- false
- 0
-
971
-1353
22
40
-
982
-1333
- dcaa922d-5491-4826-9a22-5adefa139f43
- Circle TanTanTan
- Create a circle tangent to three curves.
- true
- 0072186e-adb6-4016-86df-38adab05701d
- Circle TanTanTan
- Circle TanTanTan
-
1222
-1546
98
84
-
1277
-1504
- First curve for tangency constraint
- 276f1585-d2db-414d-9cad-55a4df87c615
- Curve A
- Curve A
- false
- fc35d6cd-8716-4f59-960b-72321690ea99
- 1
-
1224
-1544
41
20
-
1244.5
-1534
- Second curve for tangency constraint
- 53f3852a-22a8-44ca-b5b6-a4aae3a2e682
- Curve B
- Curve B
- false
- 56092d25-7aab-45c0-be2a-a3c185b8dcd1
- 1
-
1224
-1524
41
20
-
1244.5
-1514
- Third curve for tangency constraint
- e555b2be-2f2b-4874-bb3b-a9ff53014d23
- Curve C
- Curve C
- false
- 82ffea96-d981-4d57-8277-d6c12adbfabb
- 1
-
1224
-1504
41
20
-
1244.5
-1494
- Circle center point guide
- 31795280-140f-4d03-8b25-bcdecd96d4c3
- Point
- Point
- false
- 9074b0db-ae1d-4390-9ca2-eb6042869d1c
- 1
-
1224
-1484
41
20
-
1244.5
-1474
- Resulting circle
- 322c6252-a086-4536-8a7c-443661ee7fbb
- Circle
- Circle
- false
- 0
-
1289
-1544
29
80
-
1303.5
-1504
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- c4241e23-4937-41ab-8fcb-27b0b8bd3065
- List Item
- List Item
-
1008
-1546
77
64
-
1065
-1514
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 337e3aab-7698-4109-9c0b-6194b465d67a
- List
- List
- false
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- 1
-
1010
-1544
43
20
-
1031.5
-1534
- Item index
- 5c7057da-6c86-476d-9e81-41eaaa225bbf
- Index
- Index
- false
- 0
-
1010
-1524
43
20
-
1031.5
-1514
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 25f4b635-fc06-4ef5-877a-2666feb114bc
- Wrap
- Wrap
- false
- 0
-
1010
-1504
43
20
-
1031.5
-1494
- 1
- 1
- {0}
- true
- Item at {i'}
- 56092d25-7aab-45c0-be2a-a3c185b8dcd1
- false
- Item
- i
- false
- 0
-
1077
-1544
6
60
-
1080
-1514
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 6669c0d7-2364-4acd-b8b5-66174500a89e
- List Item
- List Item
-
1035
-1419
77
64
-
1092
-1387
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 983e7bfd-2e9a-4ca7-84de-a16f5aefb645
- List
- List
- false
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- 1
-
1037
-1417
43
20
-
1058.5
-1407
- Item index
- 0590ebe3-53d4-4066-aad0-0997967ae5ff
- Index
- Index
- false
- 0
-
1037
-1397
43
20
-
1058.5
-1387
- 1
- 1
- {0}
- 1
- Wrap index to list bounds
- 877ee11b-0848-4611-9aeb-a835f314a3dc
- Wrap
- Wrap
- false
- 0
-
1037
-1377
43
20
-
1058.5
-1367
- 1
- 1
- {0}
- true
- Item at {i'}
- 82ffea96-d981-4d57-8277-d6c12adbfabb
- false
- Item
- i
- false
- 0
-
1104
-1417
6
60
-
1107
-1387
- 7cd2f235-466e-4d30-bd3c-3b9573ac7dda
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop Start
- Loop Start
- true
- 4f78a7c0-929b-42e3-bbb4-27f8aa0c2b10
- Fast Loop Start
- Fast Loop Start
-
1390
-1436
112
64
-
1449
-1404
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Loop iterations
- a5888283-2ca8-4d18-b78f-11bfbe4bba8a
- Iterations
- Iterations
- false
- ff4be73d-571f-43d0-adf1-c59527de9e66
- 1
-
1392
-1434
45
30
-
1414.5
-1419
- 1
- 1
- {0}
- 0
- 2
- Data to loop
- 29631701-bea4-4d59-b002-e57ad0a19213
- Data
- Data
- true
- 322c6252-a086-4536-8a7c-443661ee7fbb
- 1
-
1392
-1404
45
30
-
1414.5
-1389
- Connect to Loop End
- f5bac24f-6342-4278-a8ed-caa1ed396d7d
- >
- >
- false
- 0
-
1461
-1434
39
20
-
1480.5
-1424
- Counter
- 2b4ab7b6-8f40-4705-a551-4e65187356a7
- Counter
- Counter
- false
- 0
-
1461
-1414
39
20
-
1480.5
-1404
- 2
- Data to loop
- da1014fb-db9d-462e-8277-2a111e46636c
- Data
- Data
- false
- 0
-
1461
-1394
39
20
-
1480.5
-1384
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 9a8e80e5-0815-4577-a696-b9bff9ec2be0
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 16.0
-
515
-1089
330
20
-
515.7685
-1088.257
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- Cluster
-
5ZcPbBNVHMeva9etHQwQFDRGLox/KiyL04TgH7Zepe2QrWEVDRDxdn3rbuvuzutdyaKBSaZEg4Gh+wNBtkVYEFREN5QgGfFPAkMFE2fEQLcOMIKKLjGgRDbfuz/d7nprl1GiiZe75O73e38/3997v3eZTpYSqwEjDMHLhGGYBT7ZXFAM0MzaMOBDNMsglxeakRtdGaiIWs8NSD/gUZF0xW1XXR4nMtug6cQCfIix/O3Y/N3Bw52v9xzK8PIgTIN1yG+HfmtpBWzFP0kxLwehCl8NB5DbrHQ8UfEVs3w1GUSe2VJvjbFapSAIKAH4Y75GzD/NCcpphhbgLLw8ywFeoEFIbRY9FicpSP1kwo+vFpz7ccaGM5lZThCieJoTlMmjIWKWYrIaqF8DJrcrt7+1dvhuOiC9dPV3Nl/e9UrMEm3YHW1oP91cfLmxo3/nkWj91mh9Q7Tp7d724SJNB6NNHdHtLyrOjj2wrPw+omH17twe361cGNXq2KM0AluTmo2V6W2HvSqt7jwCy8IxyYOLFUHj7mxGc4jrNtfltq2AlFE4hNRQQddE1UqwohxEZjUMIPBKKIjCME0xW30kHwBSyXvg5+bBoaFG+G5ZxbLVw1FUuyR9JZRU05UNWeK6sa2guCfIGlYURpa1u3hW5OIKTxkOh5IyNLhYB0j+LNmmqYXsVtmOGkhTotHienI4uhdu23e23jfXvWPWqsj1qS2EJlImEzRPBQHuIxn5thEsI5A0Iy8atNysqG+DkJtP8ABGJ07ilNyGQDIBuK5wgcWFCh4AnBL5MAjlTvAwIeijgEuk/eqoIvnLXQvW/+bsuosobs3945PEo8ospqmqkSVscgmfz2cvFASeLhMFeeXEhHRATn7JlIO+C55xYrXdBIa5HRi215HupcOshHGmJKgfenuJLI7kyeq1NMOJgrqVmEaZfs5Smg8J8hzxcpZXpk/V4BQMQoGHDAXDma+f+elzDUsOeV5ePMeyARvcr5l5BiG1Vxg3YVNhZonUv7y7SJFkLWVFngJSnMFnzfQJ17BXa5a1FGTb5q+5b2WW7NYEDKo3RmLHELGTkFheIYa1FuqI4c9C72kNMVMSYrNLAUTjHweyYLO9tCiy3fHxorynLg188bMRMkc8MkdSZHWPeCZt2va5u+X8UVPOG4MXU4GsJyGyHzTI0pIFma+C5sdDzPy0uzPiPlf0Xt3qTipy+aoRMSKeGJGUmHfzX/nNbas9G/efKAtO37QoFcR6ExK7oCFmTkLsTmXroOBOBHicYyEhPADJAENO3eHrd5+t8no2BnZ1VYqP9Wk4pXtR7XhK3qSUsoq+b9oxIBJH3rmYzT16HU8FpUsJKV0hJsiUYKpRdi9rAkyTV4CQGBRoJqDs3oZ0rFuW2o+WzHIdPr5l2sSVbd0aOlaZ9JiCyGj+2NjnXxsYuRXpN+++CimGlDyI+jPMgw++WbmBs3y0bN+5DE/VyYu8ZjLZktR4CYNLa0ObBW0JQM5/PEwGRZgHQygRSuuKFOBriAMUXU5TeJClSFTB6qb9fsCoSEyGwPVxk2iMceDtklmO2VTlCpsUVECQQVgx9epbopNOPdrESZfvxLAbULrfHSh0FZHSRhPpjv7XnLctPkW0PXS+68DxdU7D5GiszhRCDAlstdHh2C67RraFZSs2HcTU5no95vHn+jGuoFFlMCvHHw7KcEyVwTwuGdITLJFbKMI8pUNpobHBoHx4x9lyHEoBeLjU5POmoRD3v/XZl/N+rVq2b+cLdZ7by1YbTChOBjPBh1MuBDYXCvGtXgjL/0aIS3ndA9emFTo/vHps4Z+H7cy/JkTtHChERC9E+mhCDL70we6puRbHoTUzdrRzy/cYpUKtEvZbr8TYsviVX77J3v2wq+h999Y6LFBvH3cW1+UQ/elgjIecUQUJQ0HO6AWxjiZIy/ONPVd+qiL2vnvvja9PPdCTdGUkOjXeVEjrfyLGH9I6wPpN6yZPkdhiZetxS4B1p6iCAunvRMGe8d/Hrv8TSRl2/RaVCuyRhNgvEP8A
- Contains a cluster of Grasshopper components
- true
- e3ffa9be-aea1-4c8f-b91a-c84514c8d572
- Cluster
- Cluster
- true
- 4
- 34ba5804-6d3d-4e13-8709-da09a2a07b2f
- 5d144016-9a6c-41bd-9582-810eb06c98e6
- bf133103-cd32-48c3-90cc-64afe677991d
- d0a8f850-dcc3-4c50-bbb5-eec5359d6b89
- f70c175c-8a00-4b79-9f40-0e09285c2a56
- 0ed1ecee-3ba4-4a47-b048-90840067910a
- f1ca30e9-14f7-4441-b3f6-c02df8b90a6e
- ccc3a32b-ed27-4b6b-aa9c-7c844915625b
-
1519
-1247
50
64
-
1544
-1215
- 3
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 1
- d1028c72-ff86-4057-9eb0-36c687a4d98c
- First curve for tangency constraint
- 34ba5804-6d3d-4e13-8709-da09a2a07b2f
- Curve A
- A
- true
- da1014fb-db9d-462e-8277-2a111e46636c
- 1
-
1521
-1245
11
20
-
1526.5
-1235
- Second curve for tangency constraint
- d0a8f850-dcc3-4c50-bbb5-eec5359d6b89
- Curve B
- B
- true
- 56092d25-7aab-45c0-be2a-a3c185b8dcd1
- 1
-
1521
-1225
11
20
-
1526.5
-1215
- Third curve for tangency constraint
- bf133103-cd32-48c3-90cc-64afe677991d
- Curve C
- C
- true
- 82ffea96-d981-4d57-8277-d6c12adbfabb
- 1
-
1521
-1205
11
20
-
1526.5
-1195
- Resulting circle
- 5d144016-9a6c-41bd-9582-810eb06c98e6
- Circle
- C
- false
- 0
-
1556
-1245
11
60
-
1561.5
-1215
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 4920cad2-a4aa-4cba-970a-be8f1633bf34
- Merge
- Merge
-
1608
-1276
69
64
-
1653
-1244
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 5616e63d-52bc-4ded-815b-6a91f20accbf
- false
- Data 1
- D1
- true
- da1014fb-db9d-462e-8277-2a111e46636c
- 1
-
1610
-1274
31
20
-
1625.5
-1264
- 2
- Data stream 2
- 7dfb52c7-d7ca-44b0-83e2-0a95f16ab918
- false
- Data 2
- D2
- true
- 5d144016-9a6c-41bd-9582-810eb06c98e6
- 1
-
1610
-1254
31
20
-
1625.5
-1244
- 2
- Data stream 3
- bcc1d318-f60f-45d7-abe2-d04d42c1f9dd
- false
- Data 3
- D3
- true
- 0
-
1610
-1234
31
20
-
1625.5
-1224
- 2
- Result of merge
- 8493b426-1dda-425b-b6d3-9ed1898d1f99
- Result
- R
- false
- 0
-
1665
-1274
10
60
-
1670
-1244
- cc918e80-6e5b-4fb7-9853-33f1d22fc5b4
- 2cd3c35a-cada-1a81-ddba-5b184219e513
- ggRemoveDuplicates
- Make set of curves without duplicates
- true
- be46addd-f598-4c6c-a12b-b846a9734cba
- ggRemoveDuplicates
- ggRemoveDuplicates
-
1713
-1320
147
44
-
1827
-1298
- 1
- Curves
- 69e3d697-da9a-4cfe-a8ad-eeaf1521417e
- Curves
- Curves
- false
- 8493b426-1dda-425b-b6d3-9ed1898d1f99
- 1
-
1715
-1318
100
20
-
1765
-1308
- Deviation Tolerance
- dc41779b-da02-4bce-a778-475ae7c17415
- Tol
- Tol
- false
- 0
-
1715
-1298
100
20
-
1765
-1288
- 1
- 1
- {0}
- 1.52587890625E-05
- Set
- 113f7f03-21ef-4013-a700-0832a33d97b8
- Set
- Set
- false
- 0
-
1839
-1318
19
40
-
1848.5
-1298
- 4e5b891f-3e8d-4b3d-b677-996c63b3ac70
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop End
- Loop End
- true
- 7c05896f-662a-40eb-95f6-3569356fae2d
- Fast Loop End
- Fast Loop End
- false
- 0
-
1713
-1436
88
64
-
1762
-1404
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Connect to Loop Start
- 2b213108-77fc-421b-8162-edd0bd8d62ac
- <
- <
- false
- f5bac24f-6342-4278-a8ed-caa1ed396d7d
- 1
-
1715
-1434
35
20
-
1732.5
-1424
- Set to true to exit the loop
- 3e82a6f3-a9ab-4f20-aea9-794c8713706b
- Exit
- Exit
- true
- 0
-
1715
-1414
35
20
-
1732.5
-1404
- 1
- 1
- {0}
- false
- 2
- Data to loop
- 8d951d4d-5753-4924-a2fe-0609cdb0b092
- Data
- Data
- false
- 113f7f03-21ef-4013-a700-0832a33d97b8
- 1
-
1715
-1394
35
20
-
1732.5
-1384
- 2
- Data to loop
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- Data
- Data
- false
- 0
-
1774
-1434
25
60
-
1786.5
-1404
- fca5ad7e-ecac-401d-a357-edda0a251cbc
- Polar Array
- Create a polar array of geometry.
- true
- 884a8abd-bece-40a4-9c40-2fbc52783232
- Polar Array
- Polar Array
-
1942
-1416
204
101
-
2082
-1365
- Base geometry
- 4a03bb7c-6332-4cfc-8cb4-83191ef7edee
- Geometry
- Geometry
- true
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- 1
-
1944
-1414
126
20
-
2007
-1404
- Polar array plane
- 2de7a79e-6a2d-4329-aad9-32ff2b3f0421
- Plane
- Plane
- false
- 0
-
1944
-1394
126
37
-
2007
-1375.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Number of elements in array.
- c7b61c12-1b3f-4a63-a0e2-fe7d18f25d42
- Count
- Count
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
1944
-1357
126
20
-
2007
-1347
- 1
- 1
- {0}
- 10
- Sweep angle in radians (counter-clockwise, starting from plane x-axis)
- 06e0fc82-419b-49fb-bdad-c0b0276962a6
- Angle
- Angle
- false
- 0
- false
-
1944
-1337
126
20
-
2007
-1327
- 1
- 1
- {0}
- 6.2831853071795862
- 1
- Arrayed geometry
- a891ada9-7221-4e23-ba30-6e03eb1cc658
- Geometry
- Geometry
- false
- 0
-
2094
-1414
50
48
-
2119
-1389.75
- 1
- Transformation data
- 65c19d13-39cc-4b41-8185-7c0814b2acc2
- Transform
- Transform
- false
- 0
-
2094
-1366
50
49
-
2119
-1341.25
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 99221558-1d03-4a99-b409-69b169a9610b
- Evaluate Length
- Evaluate Length
-
1039
-1311
147
64
-
1122
-1279
- Curve to evaluate
- 29f9dad1-4402-41bc-ba2f-1eec8727eebe
- Curve
- Curve
- false
- 56092d25-7aab-45c0-be2a-a3c185b8dcd1
- 1
-
1041
-1309
69
20
-
1075.5
-1299
- Length factor for curve evaluation
- a4cfa37b-ee2d-4f5f-86c7-9629ee0fed99
- Length
- Length
- false
- 0
-
1041
-1289
69
20
-
1075.5
-1279
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 68ce42a1-91e4-4e52-a706-aa12f3978a8c
- Normalized
- Normalized
- false
- 0
-
1041
-1269
69
20
-
1075.5
-1259
- 1
- 1
- {0}
- true
- Point at the specified length
- 9074b0db-ae1d-4390-9ca2-eb6042869d1c
- Point
- Point
- false
- 0
-
1134
-1309
50
20
-
1159
-1299
- Tangent vector at the specified length
- 89b279be-c508-48a9-93d6-d81cc175ba13
- Tangent
- Tangent
- false
- 0
-
1134
-1289
50
20
-
1159
-1279
- Curve parameter at the specified length
- b3936063-6ef2-4e7b-bed0-70199a5d8f1f
- Parameter
- Parameter
- false
- 0
-
1134
-1269
50
20
-
1159
-1259
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- d69c337d-1a42-40e1-bb0b-af39e1305a7b
- Rotate
- Rotate
-
461
-1428
240
81
-
637
-1387
- Base geometry
- 0f1cf2f7-8d51-499e-b162-429e8de7b066
- Geometry
- Geometry
- true
- 9942603e-d6cb-45f3-bff2-04036f8fd571
- 1
-
463
-1426
162
20
-
562
-1416
- Rotation angle in degrees
- 756d957c-a3b0-49f4-ba36-2f251c9b8ccb
- -360/X/2
- Angle
- Angle
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
- true
-
463
-1406
162
20
-
562
-1396
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- b8f66b61-febb-4fef-917c-4e21a1921c98
- Plane
- Plane
- false
- 0
-
463
-1386
162
37
-
562
-1367.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 8dec1f28-7f42-485d-a5b4-945afa25340b
- Geometry
- Geometry
- false
- 0
-
649
-1426
50
38
-
674
-1406.75
- Transformation data
- f7d020da-bf61-466b-8676-e1bddbb3e8f4
- Transform
- Transform
- false
- 0
-
649
-1388
50
39
-
674
-1368.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- fc35d6cd-8716-4f59-960b-72321690ea99
- Relay
- false
- 5627c44f-6c19-422a-a2e2-8b22223f4a22
- 1
-
739
-1307
40
16
-
759
-1299
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 644328d5-8117-41f1-b5c9-8ebd3c03dcfd
- Rotate
- Rotate
-
497
-1545
204
81
-
637
-1504
- Base geometry
- c6e09daa-b527-4045-980f-1e2ea94a67c8
- Geometry
- Geometry
- true
- 8dec1f28-7f42-485d-a5b4-945afa25340b
- 1
-
499
-1543
126
20
-
562
-1533
- Rotation angle in radians
- 7c65bdac-2c91-43e4-be39-00dfca78aede
- Angle
- Angle
- false
- 0
- false
-
499
-1523
126
20
-
562
-1513
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- c21b17da-2bde-4388-93b3-03d649e8bb53
- Plane
- Plane
- false
- 0
-
499
-1503
126
37
-
562
-1484.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 5627c44f-6c19-422a-a2e2-8b22223f4a22
- Geometry
- Geometry
- false
- 0
-
649
-1543
50
38
-
674
-1523.75
- Transformation data
- 7aba7d8d-6b9b-4d79-a677-618f9fd36d3f
- Transform
- Transform
- false
- 0
-
649
-1505
50
39
-
674
-1485.25
- 9c007a04-d0d9-48e4-9da3-9ba142bc4d46
- Subtraction
- Mathematical subtraction
- true
- 989aac19-a135-4f2b-ba53-812a3d4664e5
- Subtraction
- Subtraction
-
875
-1091
85
44
-
915
-1069
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First operand for subtraction
- ab9cbe1b-4ee6-45ed-b70d-45fb4e488a24
- A
- A
- true
- 9a8e80e5-0815-4577-a696-b9bff9ec2be0
- 1
-
877
-1089
26
20
-
890
-1079
- Second operand for subtraction
- e33a3f82-fc2b-4673-aeb7-9e7e29e2b704
- B
- B
- true
- 0
-
877
-1069
26
20
-
890
-1059
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of subtraction
- ff4be73d-571f-43d0-adf1-c59527de9e66
- Result
- Result
- false
- 0
-
927
-1089
31
40
-
942.5
-1069
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- d7ac4e75-4cde-4200-805f-6f7f962b3fc0
- Geometry
- Geometry
- false
- 2a806386-4572-4a01-a8b6-0d1196046ffb
- 1
-
276
-1516
50
24
-
301.2639
-1504
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 9942603e-d6cb-45f3-bff2-04036f8fd571
- Geometry
- Geometry
- false
- f093ce94-87cf-40a2-9e26-1e909c7ce917
- 1
-
361
-1488
50
24
-
386.5
-1476
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 38c87da4-13ce-45c8-ac6f-8b1e8d795ee2
- Geometry
- Geometry
- false
- a891ada9-7221-4e23-ba30-6e03eb1cc658
- 1
-
578
-1746
50
24
-
603.3241
-1734.302
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
- Geometry
- Geometry
- false
- ab4af088-af36-410a-84c1-ed38bd369a36
- 1
-
808
-1791
50
24
-
841
-1779.18
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 82dda64f-9f77-4cc5-acf4-97d513eb48e9
- Scale
- Scale
-
326
-1786
195
64
-
457
-1754
- Base geometry
- b5636bb4-dcce-4bee-86df-68675fb7a897
- Geometry
- Geometry
- true
- d7ac4e75-4cde-4200-805f-6f7f962b3fc0
- 1
-
328
-1784
117
20
-
386.5
-1774
- Center of scaling
- 1cb5b388-cddf-4d74-849e-5a2609d80c7c
- Center
- Center
- false
- 0
-
328
-1764
117
20
-
386.5
-1754
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 7827fe30-0ca4-4d8c-8109-35fed0a14791
- Factor
- Factor
- false
- ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b
- 1
-
328
-1744
117
20
-
386.5
-1734
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- f093ce94-87cf-40a2-9e26-1e909c7ce917
- Geometry
- Geometry
- false
- 0
-
469
-1784
50
30
-
494
-1769
- Transformation data
- 0a216567-1d23-4ecb-9a5d-5d3dd1c8bf05
- Transform
- Transform
- false
- 0
-
469
-1754
50
30
-
494
-1739
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 13066c57-c507-44ed-9a1b-f7b5009ef564
- Scale
- Scale
-
521
-1976
195
64
-
652
-1944
- Base geometry
- 31c0d7dc-64fc-4803-8f7d-8aca73aba599
- Geometry
- Geometry
- true
- 38c87da4-13ce-45c8-ac6f-8b1e8d795ee2
- 1
-
523
-1974
117
20
-
581.5
-1964
- Center of scaling
- 985f60a8-5be8-4bb2-ae7c-4f9177e293fd
- Center
- Center
- false
- 0
-
523
-1954
117
20
-
581.5
-1944
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- f33cf61e-b79b-4852-9665-d2364dbfab0b
- Factor
- Factor
- false
- 144c7ab7-4a5a-4683-9548-40e231b51e32
- 1
-
523
-1934
117
20
-
581.5
-1924
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- ab4af088-af36-410a-84c1-ed38bd369a36
- Geometry
- Geometry
- false
- 0
-
664
-1974
50
30
-
689
-1959
- Transformation data
- 7d246949-f20c-4300-84b1-b79babbee953
- Transform
- Transform
- false
- 0
-
664
-1944
50
30
-
689
-1929
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 3c3caf03-ec61-40fb-bbbc-55e0509921de
- One Over X
- One Over X
-
278
-1854
88
28
-
321
-1840
- Input value
- 62f99155-181e-4eef-aa0b-4fb32549cee3
- Value
- Value
- false
- ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b
- 1
-
280
-1852
29
24
-
294.5
-1840
- Output value
- 144c7ab7-4a5a-4683-9548-40e231b51e32
- Result
- Result
- false
- 0
-
333
-1852
31
24
-
348.5
-1840
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- 18bb0bab-a683-43af-a280-8b11bc5a275e
- Power
- Power
-
193
-1609
85
44
-
233
-1587
- The item to be raised
- 8d7d79a3-f2e3-4590-b6a2-d315e28041fc
- A
- A
- false
- 0
-
195
-1607
26
20
-
208
-1597
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- a0654839-829a-4b43-93d1-991db9b1c547
- B
- B
- false
- 656133c6-fd17-47fd-8579-dbb9ed1f791d
- 1
-
195
-1587
26
20
-
208
-1577
- A raised to the B power
- ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b
- Result
- Result
- false
- 0
-
245
-1607
31
40
-
260.5
-1587
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 656133c6-fd17-47fd-8579-dbb9ed1f791d
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0000000000
-
-83
-1565
250
20
-
-82.16093
-1564.382
- 0ca9be21-459e-4cd0-9d77-05e72a6a1422
- 8df4d222-85a2-467d-a510-b8dde333d730
- Polygon
- Create a circumscribed polygon with optional round edges.
- true
- 3f29085a-a196-4a1c-a7a6-bc1ecf90f2e6
- Polygon
- Polygon
- true
-
-139
-1448
204
101
-
11
-1397
- Polygon base plane
- true
- e5dbf7e1-f194-42f2-9814-83a39933abff
- Plane
- Plane
- false
- 0
-
-137
-1446
136
37
-
-69
-1427.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Radius of polygon (distance from center to edge)
- 8d5636f9-84cb-42d5-9714-45fff3e395f5
- Radius
- Radius
- false
- 0
-
-137
-1409
136
20
-
-69
-1399
- 1
- 1
- {0}
- 0.5
- Number of segments
- 5bee3a72-e7d5-4ca3-b906-2563831ee536
- Segments
- Segments
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
-137
-1389
136
20
-
-69
-1379
- 1
- 1
- {0}
- 6
- Polygon corner fillet radius
- e9c0f3b5-55a9-435c-a832-e3bf377ab93e
- Fillet Radius
- Fillet Radius
- false
- 0
-
-137
-1369
136
20
-
-69
-1359
- 1
- 1
- {0}
- 0
- Polygon
- 2a806386-4572-4a01-a8b6-0d1196046ffb
- Polygon
- Polygon
- false
- 0
-
23
-1446
40
48
-
43
-1421.75
- Length of polygon curve
- 8e3e547e-1833-4408-a514-f97520d59953
- Length
- Length
- false
- 0
-
23
-1398
40
49
-
43
-1373.25
- 753aa9da-f7db-4e66-8cff-3c679ff3286f
- a48ac930-c378-48dc-84da-26b2af9d8302
- Gradient Radial Fill
- Applies a Radial Gradient Fill to a Shape
- true
- 3a0370cf-585f-4e6c-bc66-8a382d0b9e32
- true
- Gradient Radial Fill
- Gradient Radial Fill
-
794
-1934
150
64
-
898
-1902
- A Graphic Plus Shape, or a Curve, Brep, Mesh
- 20dfc9c4-85cd-4b70-9df4-0c5b6c345f26
- true
- Shape / Geometry
- Shape / Geometry
- false
- fc8f1eb8-4479-4724-ba40-74767b12e719
- 1
-
796
-1932
90
20
-
841
-1922
- 1
- The Gradient Stop colors
- afcdc8be-c408-4142-8e14-6e96c51a9e0e
- true
- Colors
- Colors
- true
- d8805e36-5b7f-4f4b-b077-b18ef5b8d713
- 1
-
796
-1912
90
20
-
841
-1902
- 1
- 1
- {0}
-
131;255;255;255
- 1
- The Gradient Stop parameters
- c1c538de-e368-49f8-9ac4-ae8c712a87cb
- true
- Parameters
- Parameters
- true
- e0a2d02a-9b61-46e5-8b6b-af837c2fd66b
- 1
-
796
-1892
90
20
-
841
-1882
- 1
- 1
- {0}
- 1
- A Graphic Plus Shape Object
- true
- 43cb7391-ffa5-458d-ae72-bcb11223aa25
- true
- Shape
- Shape
- false
- 0
-
910
-1932
32
60
-
926
-1902
- 203a91c3-287a-43b6-a9c5-ebb96240a650
- Colors
- 1
- The Gradient Stop colors
- d9c5622d-0aec-4e65-872b-c180ee35bf2a
- Colors
- Colors
- true
- 0
-
692
-1870
50
24
-
717
-1858.302
- 1
- 2
- {0}
-
255;255;255;255
-
0;0;0;0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Parameters
- 1
- The Gradient Stop parameters
- e0a2d02a-9b61-46e5-8b6b-af837c2fd66b
- Parameters
- Parameters
- true
- 0
-
701
-1806
50
24
-
726
-1794
- 1
- 2
- {0}
- 0
- 1
- fc076e15-dcb0-4d11-bf04-f5c79fc3d200
- a48ac930-c378-48dc-84da-26b2af9d8302
- Drawing Viewer
- Preview a Drawing in canvas.
Note: Right click on the component to save the image or svg
- true
- bc1970ed-dd7b-4d38-b5f8-bab39784ee32
- true
- Drawing Viewer
- Drawing Viewer
-
1366
-2523
1024
1068
-
1544
-2501
- 1
- A list of Graphic Plus Drawing, Shapes, or Geometry (Curves, Breps, Meshes).
- c82f62fe-e186-4950-8e91-0e0e7682c7ff
- true
- Drawings / Shapes / Geometry
- Drawings / Shapes / Geometry
- false
- aab4c91b-c8f3-45c3-994e-63fefbac5c2c
- 1
-
1368
-2521
164
20
-
1450
-2511
- The PPI (Pixels Per Inch) resolution for the image which must be greater than or equal to 72.
- 7c1738eb-ecec-4f5d-8379-22745cf7ce2d
- true
- Resolution
- Resolution
- true
- 0
-
1368
-2501
164
20
-
1450
-2491
- 1
- 1
- {0}
- 96
- f3220ce3-0aeb-41b4-bfb9-435838423791
- a48ac930-c378-48dc-84da-26b2af9d8302
- Construct Drawing
- Constructs a Drawing from a list of Shapes
- true
- 897064e6-a16f-4c11-b7c2-13a1d699896f
- true
- Construct Drawing
- Construct Drawing
-
944
-2110
255
155
-
1138
-2032
- 1
- A list of Graphic Plus Shapes, or Curves, Breps, Meshes
- 0923c058-3fad-4c4a-8f2e-b7b2c65b6ebd
- true
- Shapes / Geometry
- Shapes / Geometry
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
946
-2108
180
20
-
1036
-2098
- An optional frame for the drawing. If blank, the shapes bounding box will be used
- 1cfb711f-b655-4302-a7e6-cfe398f1f17b
- true
- Boundary
- Boundary
- true
- 0
-
946
-2088
180
71
-
1036
-2052.5
- The width of the output drawing
- 85ece0af-2be9-4a50-a4b8-186b461507d6
- true
- Width
- Width
- true
- 0
-
946
-2017
180
20
-
1036
-2007
- 1
- 1
- {0}
- 1024
- The height of the output drawing
- 8ab66ff6-0bd8-4d88-91d3-df69c1fbbd8a
- true
- Height
- Height
- true
- 0
-
946
-1997
180
20
-
1036
-1987
- 1
- 1
- {0}
- 1024
- An optional background color
- dba02cce-f527-40ca-b8cb-228225f95208
- true
- Color
- Color
- true
- 0
-
946
-1977
180
20
-
1036
-1967
- 1
- 1
- {0}
-
0;255;255;255
- A Graphic Plus Drawing Object
- aab4c91b-c8f3-45c3-994e-63fefbac5c2c
- true
- Drawing
- Drawing
- false
- 0
-
1150
-2108
47
75
-
1173.5
-2070.25
- The bounding rectangle
- a9a49907-4084-4df3-8359-246f26c5f555
- true
- Boundary
- Boundary
- false
- 0
-
1150
-2033
47
76
-
1173.5
-1994.75
- 030b487b-a566-476f-96a4-a0ae2ad283af
- a48ac930-c378-48dc-84da-26b2af9d8302
- Stroke
- Applies Stroke properties to a Shape
- true
- 3b62aca3-eb60-4806-8b07-757b07c9c96b
- true
- Stroke
- Stroke
-
901
-1806
184
104
-
1039
-1754
- A Graphic Plus Shape, or a Curve, Brep, Mesh
- 4030d31f-85c6-49ce-abc4-b737abf1d911
- true
- Shape / Geometry
- Shape / Geometry
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
903
-1804
124
20
-
965
-1794
- The stroke color
- 19e0212d-1ae7-4bd2-89ff-bc8b9973740a
- true
- Color
- Color
- true
- 0
-
903
-1784
124
20
-
965
-1774
- 1
- 1
- {0}
-
0;184;184;184
- The stroke weight
- 3ded5006-c0f5-44f0-b5f8-9c5d0bc75ca5
- true
- Weight
- Weight
- true
- 7d674bcc-ccf9-4209-bf45-8d4272beda48
- 1
-
903
-1764
124
20
-
965
-1754
- 1
- 1
- {0}
- 7
- 1
- The stroke pattern
- f76a8473-e34e-47a7-b281-e3880e37c6fa
- true
- Pattern
- Pattern
- true
- 0
-
903
-1744
124
20
-
965
-1734
- 1
- 1
- {0}
- 0
- The shape to be used at the end of open path
- bc5da7b5-947a-4121-b7ad-9cd69f1189c3
- true
- End Cap
- End Cap
- true
- 0
-
903
-1724
124
20
-
965
-1714
- 1
- 1
- {0}
- 0
- A Graphic Plus Shape Object
- true
- fc8f1eb8-4479-4724-ba40-74767b12e719
- true
- Shape
- Shape
- false
- 0
-
1051
-1804
32
100
-
1067
-1754
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- e44eaf02-09c5-4ca9-b519-0dbba3eea3b4
- Merge
- Merge
-
645
-2110
90
84
-
690
-2068
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 8f3957d8-3ba6-4c97-94d4-ed1577265058
- false
- Data 1
- D1
- true
- 4b9d9e70-e262-4dbf-95dd-eecf70ba18a3
- 1
-
647
-2108
31
20
-
662.5
-2098
- 2
- Data stream 2
- 1f0189ac-ed74-4b9c-babe-24ae101168e9
- false
- Data 2
- D2
- true
- da43bc1d-2327-4d3c-872a-8bcde5db8d8e
- 1
-
647
-2088
31
20
-
662.5
-2078
- 2
- Data stream 3
- ae14e5e6-4c3a-4542-b214-577ca4574944
- false
- Data 3
- D3
- true
- 0
-
647
-2068
31
20
-
662.5
-2058
- 2
- Data stream 4
- f001c240-745c-4ea4-83f0-cdc2a8a22020
- false
- Data 4
- D4
- true
- 0
-
647
-2048
31
20
-
662.5
-2038
- 2
- Result of merge
- d8805e36-5b7f-4f4b-b077-b18ef5b8d713
- Result
- Result
- false
- 0
-
702
-2108
31
80
-
717.5
-2068
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 4b9d9e70-e262-4dbf-95dd-eecf70ba18a3
- Colour Swatch
- false
- 0
-
255;255;255;255
-
501
-2171
60
20
-
501.9104
-2170.41
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- da43bc1d-2327-4d3c-872a-8bcde5db8d8e
- Colour Swatch
- false
- 0
-
255;0;0;0
-
501
-2088
60
20
-
501.9104
-2088
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Pattern
- 1
- The stroke pattern
- 18d21670-01a6-4888-be2a-fb679edf3f46
- Pattern
- Pattern
- true
- 0
-
820
-1746
50
24
-
845
-1734
- 1
- 4
- {0}
- 1
- 0
- 0
- 1
- 93b8e93d-f932-402c-b435-84be04d87666
- Distance
- Compute Euclidean distance between two point coordinates.
- true
- 4dfa6f82-2462-4b64-acaa-c432ed80052c
- true
- Distance
- Distance
-
777
-1618
177
44
-
898
-1596
- First point
- 2fed7015-0dc4-4b1e-84d4-65d070986362
- true
- Point A
- Point A
- false
- 0
-
779
-1616
107
20
-
832.5
-1606
- 1
- 1
- {0}
-
0
0
0
- Second point
- 4bf86d6d-e035-49ae-9f28-63df5d3ecace
- true
- Point B
- Point B
- false
- a6f821da-f498-4973-aa14-e2abfa24b1f8
- 1
-
779
-1596
107
20
-
832.5
-1586
- Distance between A and B
- c74cb0c0-6368-4906-bcbd-e749a7d8fb13
- true
- Distance
- Distance
- false
- 0
-
910
-1616
42
40
-
931
-1596
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 5b362e0b-edfe-4632-99a1-dbf27430406c
- true
- Deconstruct Arc
- Deconstruct Arc
-
640
-1660
102
64
-
674
-1628
- Arc or Circle to deconstruct
- b20ba683-a90e-45ff-bcf5-86e4e80dce23
- true
- Arc
- Arc
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
642
-1658
20
60
-
652
-1628
- Base plane of arc or circle
- a6f821da-f498-4973-aa14-e2abfa24b1f8
- true
- Base Plane
- Base Plane
- false
- 0
-
686
-1658
54
20
-
713
-1648
- Radius of arc or circle
- 4654f581-ba2c-4dcc-84fd-f7da8bea95f4
- true
- Radius
- Radius
- false
- 0
-
686
-1638
54
20
-
713
-1628
- Angle domain (in radians) of arc
- 263e2ac0-9c38-4a0e-9a1d-183127a1dd78
- true
- Angle
- Angle
- false
- 0
-
686
-1618
54
20
-
713
-1608
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 8bb268bc-8f14-4022-bf54-801ab622105f
- Multiplication
- Multiplication
-
995
-1618
70
44
-
1020
-1596
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 65450a6e-1778-4887-92ef-a65ecaef22a5
- A
- A
- true
- c74cb0c0-6368-4906-bcbd-e749a7d8fb13
- 1
-
997
-1616
11
20
-
1002.5
-1606
- Second item for multiplication
- 4e86611a-8619-47ee-b8c4-46d5b5e3d8c4
- B
- B
- true
- 74514ff8-3b28-43d1-b7eb-4790ae9f09ec
- 1
-
997
-1596
11
20
-
1002.5
-1586
- Result of multiplication
- 7d674bcc-ccf9-4209-bf45-8d4272beda48
- Result
- Result
- false
- 0
-
1032
-1616
31
40
-
1047.5
-1596
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 74514ff8-3b28-43d1-b7eb-4790ae9f09ec
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 4
- 9.00000000
-
720
-1524
250
20
- 5881d944-0281-4fc8-b203-ce6a55dbf2a6
- a48ac930-c378-48dc-84da-26b2af9d8302
- Solid Fill
- Applies a Solid Fill color to a Shape
- true
- 34005dd2-41a4-4fda-b7bf-5eba48ac6009
- true
- Solid Fill
- Solid Fill
-
1120
-1791
162
44
-
1236
-1769
- A Graphic Plus Shape, or a Curve, Brep, Mesh
- 654b68f0-6f66-4d66-9c80-8d0d25939ce5
- true
- Shape / Geometry
- Shape / Geometry
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
1122
-1789
102
20
-
1173
-1779
- The solid fill Color
- 20cde91e-968e-4cfc-92f3-af939a769c15
- true
- Color
- Color
- true
- 0
-
1122
-1769
102
20
-
1173
-1759
- 1
- 1
- {0}
-
255;0;244;124
- A Graphic Plus Shape Object
- true
- 6d245542-b1d6-46d1-9114-0a70281c6d1a
- true
- Shape
- Shape
- false
- 0
-
1248
-1789
32
40
-
1264
-1769
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABzlSURBVHhe7Z3pbxvnnceDfbH/S7FY7OsC3aK7QN8FWCw2C2xaLLBtNm03SVsETZo2ae3YjeMkTpygdhwftR3HjhPbkmNLtk7Lh0RRt3jfN0VSIsX7kkhR8n5mnvGYoihakkWFcvxFMnrmmed55nl+3+d3DYf0M0/xJOD+U+xaPKTwbktieHj47NnPx8fGivmcw+nu6+12+wIWs1nMvi7y+bxOp7NYLLdv31ZGkXHnzp3R0dHJycma+sag8fT09NjY2KZ6PSaY6sjICLPl2Bist9UpRHbvHjyIJGNzs+MTk0ODdxeXVnTT0w6HY2Ji4tKlS/F4XCbuIdKplF6vh8W1FLLmqampjZNBF61WazAYdpI/gaGhIbbvI8F6W53Ce/fudXd3G41GZpjJpCHGbDZzSuWePXv27dvvdNo9LofZanV7vPPxuM/rC89Gj3/2GcuDAGUUGYKPzVLIvTQaTc1QOwNu+kjsAgrBrVu30LnlSoVJCiwvL+/bt+/FF19EP8xmUyadctitVqvN5w+EQuHYfOLAgQP0gn5lCBksGDKwihukkGYo+mYN7w4DabQ6hZi+Q4cODQ9rfG6nLzQnM3i/VCpRj55BUjgcFpUqUqlUf39/DX9AUIgeU1Cq1gdtMGWooHLeqmC9dShk9q0AMRN84cWLF7XDw9lMOl9YkDl6BAqFgugrr2YVYGWDFKJ5OFQ2SiurIGC9dSgc3A4grCFxlP5SENVSTf2jXFJP0SGhRugB2maz2TCelUqlXIWlpSWltBqJRELaAvV4YmQoVE7WB7QRDa4NiFoQtRQKr5NOpyORyOyWMCcjJMPlctvtNpxTKDQDqo8gqPx9WFAQDMbjCZ/PK6IYEc1DJzZwg4Ansby1YJyNUAi4NeNsRF+/XdRSiAsJBAJs5GKxuLB54KJSyUQylSK+IG70BkJel81qd4aCfrvT7fe6vL6A02ELzoSJPcLhkMVqC4eCNocr4PO4PH630+4PhqxWczKdm41E3n//fTX0QJQUNojGcodCod/rgRGIWsfHxykoVS2MOhQGg8HFxcVoNDq/JUSjkhaijn6/3+5wGg36QCAYmgn6/P6ZINsj6Pf7UDufz4e+eb0+dFJc8ge47A8GZ3xebzqTwQx8/PHHDfRpy4DCBsNCP3abQHcL+kcXzNiOQeywWgoHBgaYvdvtJphmJ24JaM40gTjjYNNu3ZIGlKoEpqaQII2IFDiKMkdxTZxSslmt2PPGurI1IGXugrtVzteABkx4bU65ERD7WGRggXYA3I5J1lII4BYiuUZhyxDdGQ0axKkK9ao4rYZayQSAmM/2gsEFhRSUqiowAewn24iCUrVh9PX1GQx6xLhj8Hq9WE0KtRQ+2RAUYh7WUkgNBnZriSDh6yeffNLT3TUbniH+0huMbreLaE56yqfTu73+yvKKLPbtBC6POVP4blGIemGotVrtWgq5hLwhYwsqyJ5oa2ujYyGfi0TChALpdCafzxMUxOPzoXBkywwulaW4pFAsEqAU8nmCzFwuy8iV5WX2yqVLl2jzBFIIPUhTQNQoJ7KPwE6upZBLuBY8NAWlajNgWHYGcZws9k2gkC+AbEbiO5uVuCktLirXZBTzmenJcZJlo8nscLrMJtOwZnhaN03Qzr45cOAAbZ5ACrGH8AEIylgnsQm0iRp8M6EWhbVaiAldz0c+Etyxvb2de8lil7C4UCS5ItGikMnmlpeXlQtVcLsc/f19fbcGMLZDQ5qpyYmbXd2TU9PK5QdYWloSjzWkk5UVyouLC8srK5MTE8Sl1D1RFAr9E49yWBGasX///pdffhkWOaXS6XQSsNRYS8rwCt9bU0GATSOL7ezs5C4C83OhaZ3ebreNjY5qtNpkOq9cqIJhevzuvTuD2tH5RDIcjsTjMbPVYrTYvv7qq1OnTh0/foLZKk3rgbSNrUnhyaEQAqDq5MmTFFgOSSrkEWW89957L7zwAmaKSvg7c+YMK1e1jQLagwpuTf8E0MLr16+LjVKNpXIpmUytAKViFYhHTEYjPBH4eCR4SZwddtupM+d/87u3P/70bCKZUprWA7kfe5HCrqdQaB4WEnrIJqFQhNrhcPjHP/7xG2+88frrrz/33HOplCQO2nzwwQesXOksE08iWDfA2RRwh5DALRoDz0eoyjyzmSxWwWq1cne4zOVydrudDHkmHM177o4c/Mfh93+Um48q3eoBCvEIFHYxhUgfubP3MZgIAmOIMyM/M5lM8hrvf/nll9///vd/+MMfUilq2PK9vb1Kf3kEbCBKKR52CBbFnlBPNwjaN6BwqVT0BwLRaEyr1Vzr6AjNxvS6SfLItqvtM7Nxo26SSOrq1Stuf9hqcxl7z/huvGltezNoqfWL1fD5fEyewu6jUIgY24VKiRcshFapQhekQoxqHilwSiXbVhriAdBdLmFIAZeQCOrIVmAE0OAhTg2YzLVr1xhElq0ETChmoFBcIBkolctL5XI6nUYFddNTE5NTuULR6XT4vG66FBbKVovJ6XAO3rubzhUxpAtLyiBgPjYbjpCZxDOZTDIRx2USvuIjigslpnr58mXa7CYKBUlMvVrtqARKCxm0kZ7uDAxQj3ABBbVGaSSPxjhsAowYUV+xWDx27NjevXuPHDmC86IGoSNipXVDrA1nioWs3WbVjmh0RvPU5GQiUxD1sViMqXTdvBkMzsAufbu7uixWKySzaSiPjI4qwaeMfC7j93tZstPlxrpYrTa7w251OBKJDOs6ePAgbXYBhWvVTigTlULJtgxE87e//U2I7PTp06+99tqJEyd++tOfsjOoISU4evQoRviRT2uZ29WrVznSqxrlclnKB5aWKkvlSDiM9kxMjHf39MxG42aTwWI2dXRiVOMWo85kstwbvDMzG7NZLSir0r8hsCs3b96k0NIUCpJUtSPuF2r3mMwJIPGOjo7Dhw8LCl999dXnn3+e02effZYkjxooJPbZiDkVm8zr9dKrPpYriUQCdZ8YHyNRzeQKNpuVvBDDkC0smo06i9VGwp4rLlosZpopvRqC8JWbUmhFCqvVDua2Ue3WAiEKCnFd/yLjlVdekSSEMSwWe3p6mAB2klsrHdYBYTBxpujYALg0IlIyVxjFVsvRqT0cicg5K/XWjYS1AuwYEaa1FoWCJNQO2rZd7eqC8cW9iO8xmN3d3ewbYhxqUH1hQjllPzWeA1dxZvRqDLPZrH4ghW8TBY6U0SqydabBfPAXSof1gZTYf61CIesXagdnTE6onahsHnkqEIT8GeotJiDMpjilnjITQFjM6pEzoYHouDWwWFaNh+PIKRom6tcD7cEqCkVVNZgWq2InUmZ+ahlQBlSK0/WAFBqsXHTnyKRVtWNYUak0agEwHyT7OE/gNgjGR8JE2ogCYyBqxKW64OoqClMPgL0WiEajHrebFDKbzZKaYHw9Hjf1tPH7fW6Xi0rRZT0kk0mmIrZzNQR5bHlV7djpKqNKo1YCsxIZ5A5MDyGwjzdCZC2FKgq5bDqTSSSTg/fujE/p7HYbNnpsbGRoeMTpcnk9JChG1NjhdEOp0md9sHK0XtxSkEShxdVuLZgero617Ng8kYmqkcRTquiqQSUSrkNhYj42OzdH7tnXc3NmLp5Op4ig7t3ptzg9pXJ5cnxseHhobHKqXFmxWixKn/UhKBQzUNWOSEFVO2U6LQ+myuSxqGLOHLEuzQaBLlJCF4XElFoZ1AMk/JDC8YkJwmKr/eEHHMRFWuml90EyJLfLzRBMHaM6Ozsr3D42VmkqgyhZKVVBRORC7RiQ2ewKtasL5sz+E5tvdHQURmshf2i1vUBiyJCtAzvoklIrx+q1FIbCEfxcbD6+UCzIbiwlvas3NGzQ62eCwYmJsb6B2waD0e/zYloH7twm7q1OZpfKCwaD3u2Ba7f8PwdXOlv46uuvLl++TNy869RuLZg/+48EgKP49KoG4nPKZmBF/rBXOZFBTlmbF6pIJ+ORSNgfCPZ0dfjD0XQqCQF3bvUarc7FUnlUO4yB9vj9S5UVchqljzT7Csoan4/NzMyYjCaX2xONxUrlyqXLly5cuCC2jCKJ3QzB4pEjR+o9Blvxe9zscofTFZTejA047Har1RYKzzbh7af7c3NzSJVCHQoFKpUK+mexWLHC7DinwwFhOr2OKHRuLopS2+32YDCotF4fGE+WXcMfp1j59SCnPRJqyuqpKK+Hpio6IUZvb++hQ4fqPslMxGMup5PtOxeNIijieRJ2j9e3ZQqXK0uZTFb60HhlpbK0tMyRP0vS4yT2ivhsZF0KwfLySrFYKJVK4rQov0dFAf7N8pOFdDqNpT554kRsfl60WQucB0JXBCADEWNUiXJZXjXkb1TMhEIhdobT6cRKh8PSNzCk1/nc7nA4zDXps22Phz3eAGrE0STAItEpJqf6I4Xq8jaikEtPjI8OaTQms8XucCqvP+l1yXRuaGjNJxWS6ZufD0dmG++YcrncdeN6d2/vrXuac19c2PPHP549fvyvn3xSKBaVFquxlkJOUU3lchXKJemTtXw+PzY2Oq032qxW0kq9XjcxNW21WtnUaL5WOzyo0TBVpU89sDnQReVmTQAU3rhxA49IgciQfYyhYtOwp5UZwCihwcIi3mtZ0prHYHdlpVBAJHnEu1RZLi0uov2ZTJry6OjI+fPnafKQQp/f7/X5vL5AY61fWFy8M9A/OT1tsTuPfXb80IEDN9rbD+zfTyqptFiNGgqFUSU6VS5XITwTRNWsVnvH9fa5ZG42EkJM3TevO/3hbCY9otXeHujTDA/dHR6Z0Enf214PqG/zKIS2np6eAwcOYH6uX79+4sQJ4nPitbfffpt6ZQb378dmZyanpvE1U5OT0utPmTqvP9UFBvPatWvHjx//7LPPGj83x94gSQoPKdwg2FakjJJBI8l3udquXHn3wAG0RLm8BjUUYr4vyuCS1+Uwmc0OpxO7GJ6NipeE2GVE0Ta7g8XncjmjQW+zSYKIxxNoofj+hcFoui/yl2XWLBeqQKpTo/fbCKRGgoQWEtYTEKJ8BAocT506RY0yA9muSl8QK+TC4QgOqFLZRKR67sKl3/zu7U+OfZ5MpZWqehA7lcIqCpsRExMQYW0UAchvRZw7d+6LL77gUj6Xi4RnzMRsM0F/METYjIPBmGJmb9y8ib+MRaPslc7OTpwBbSKRWXb60LDWNDZiOf6D95/73sDr38uapU+Lqo2V1WpBuMr9mgAUEZsJQ8QVKI1y142BeRJJ4OBFVBGLEcBL7z5RTiQSlJOpbNY1MHbwH7Tv/XMuNit3qo86FOoMJovBYHW65QZbARwgTfIX6YgRl98bRyG6u7tZtiIAOZwhV1X6VGGhkA34/WzbgVs949MGEhK9Tjc2Onz73iA7a3JMS+Y8pZcssGVE8/H//L32f59565+esfVdmU9n3R6P1WYzmgxuX2B4WPvB++9Xv6a2vWD+bEQ1ytsIlkoL+AhImpwY7+js9PgCRoOOrXb1m6tOb9Cgm2RPXLt21Wx3mcw2y60vfF17bFf3zFjruBsVBH3MhMJDCvPF4kKhkM1t1GqvBcYj6PeNjmgxg9OTU2Pj44l0DoU7evRotUDXC2fgno2NJcBY6g1G1DcUDvt9XryO0+Uiq4lEIhjeUGTWqLl7+X//7txPnjnyg2dmBr5aWCwR+CCgaHQuFk9A4aeffiqeJTUDbMeOjo66qb0KkgGmJEUVsppWlkoonBTAj42Ojo+XK/fJGB126917d5dW7tvMRjLp2wP9+cWK2+UslsUYElKJeDyZErlAsVBIJlOl0iLRTXmpgt1ua2ujzUMKNw6sQTw+Pzc7i8SVqgcgCSF2KpcWUaZSGTtzn9Xin0mHFQHIu7j6mcBasMHn5+dZsxzQLQtuuBe2S3oEaLHMz87O3zk1dO6wp+1wJlDr87G93AKnpdxvWwF/GJW9e/di85X71UMhn8GLEzTqTRZ2ZDKrhOvRaBRR9Pf1idefiAwGbvWT/rM0XCxl9nr1c8p0Mu502geHBtEKbJJeb0B3DSZTLJ4aHBrat28fbR5SGE8kcU6F4qN/VcJkmL7Z3W1zSC8NKFXrg0gHgSoCePC+Hrwm5qPBGWxLnEymUNyQ9o+NaHCrPf239MZGO6CpESlgc5w+fbqxFgofSSCNPJEq+RJbMplKGY36ru5ul8dntZiwLJ03Oh0un8Wod7rc7G27y2M2GddsDul1OgZEc8SeFrU4oytXrlB4SKHVbieID4YbuVCBqXHt8OhYYaHU+LfQBGoiUuzbyZMnz33+eTaTnJgYHxufwIdBs9O1/rtDDzA8eHtkdHRsSjcxbWgQR+wAhehKYy2swcryErkHpnVEqyGvXSwvWy1mWOzr71us3LcYpU/epnVTpeX7aMUGX3/CF24xqQDMBqHjgXFOStX6qP68UIBwUdx7s8D4kGlhS2s+IalBs1N7Jo8tqfuxzCOBU7CxZ222aDSGv0CMLCcQCOIlqHQ6pceWStNHQSyTwkMKYVUF0S0530woJP3ywYMfMJF+ByESCYVm5ufj0bk5UkvCDaVDPRA645YI3qoNqQC7WP46yCpQ0xiMxoIBBaVqDRgHP7/2jtsOdnDdOVNJ8IklgAylqgpi5mIJgMY0kz7Wkb8WLMp1h60BbcQyV1Eo5cwy8Jojw4Nnz3x+7vy5k6dPt1395uzZc5+fPXfmzGlqDh85evz4iUMfHW6/2mkym5Q+9YB1wPnXlSYbmR3UJOwAfwDTotxvDdBRlj80NNTb26tUNQFimasoxOIJ4BEN+um+3t6+W/2dnR3t31zrG7jd293d3nalq7en82bX1fb2Cxe/ujs4jDVV+sjA7ZEtcBSnjIMKwpZY83cHCJe9iyggkuU3VQKrKEQxH2Cc/9EhIFGi1xMWU4YbpUYmaXpa+n0dpcP4uHjLA+NOwsDUqSFk4h7fQQoBq4ZIJIOgUMfmGYZVFMrb5bHA1iPgZN7Cik5NTcEiiijMKaCNcufvBlgyy8caIQfKSu22YhWFSt3jAZJksiRLotKJ4sIoZWrwE6LNd4ROVspRSIDCtq96+ymshkonZY1Gw05EL8VisLojIyPibQzR5glmVKwRz4JRRQ6UlQvbgeZSWI1qOmGOpAIWhWcV9pa1cUm0eSLpZF2sEaMKl5SV2sfGzlFYjWrNw66ijiqdIg56Ut2nWAsrBerpY+LbobAGKqPCfUJhtfuE4Gr3CZRuuxYsBKuDUa370GOzaAkKqyGoEgtb6z4xvxhhLok2u5dOJs/qYJE9+pgLaTkKq6HSSeHJc59MGAh7I7yGcmGTaGkKqyEWLKjCrop0RdBZ7T7VNkq3lgezZWsS47CirbG4ayisgaAKQBvkVbtPka6o7hO0OKPMEBuDUWXmW5jtbqWwGipVlGvcJ4Vd4T6ZFRDT3qxRfRIorAaCUKlCEavdp2pvaaa2Eb1aBEwJ+7FZo/qkUVgDwShHka6oT/s4tubTPmbClAzyryIxpY3M6gmnsBqIAwGB9dwn9lZtsxHZNQkSb3fuMCWIhE4mo1xYB98hCquBjARVlHGf2Fv8kLC3LZKucF9hVDlSVmrr4TtKYTVUOimw6xFZ3XRFbaN0az64HfdFF5kG913v1k8prAWSElQJ91ltb9e6T6B0aw7EjYRRxc5TVi5U4SmFjSAkKASHLtZ92qe2aR6dDM7d1/vc+CmFG0U1nTC3w+6TMbEKwrYzePX4TyncCpCgStWOuU9xU25U8zLOUwq3ASqj0FY3XdlG98kg3AIWVaP6lMJthqBKCLfmaZ/qPrkk2myNTtGLAQGFpxQ2ESqdFGAOdYRF5K66T/SJZmob0WsjECOj7qjjUwp3CAhdyJ0jdrXmaR9kUIMdVtso3RqClij6Uwq/HQiqwCPdJ2jAKJeeUvjtQ6WKsuo+ZU+nvEvd2H3uegpZlfSjgGsgFqycrDmtwdqr6mkDDWgGVDopiHRFdZ/rpSu7m0LWwCZlhSxPBTvXYDDYbFaLRfpqhwgITRKMBoMURwDqxXc/xKkYQNTLp5LIJiYmOUUDdpjFaghGOUJbtftkhurTvl1MIQtjDfPz84VCIVcFTs0W64cf/fXS5auJRGJhYcHldrOn793T6PWGQiG/JP+rIu3t7dDPVUZwuz0+ny8Wi2UymXQ67fF4LRZrNBqlDNPoonLLbxWCTiDcJ5MXdO5uLTx9+rTFYhFftBTwej12u/0Xv/rtr1569b9+8vOzn385Gw5evHjphRdf+eX/vXr8xGnp6+2dnV9//fVLL730zjvvRCJhtvgf39y39+2D4xOTgYDf7Xb/ec87v/7t7xnW7/djx5Cacr/NAIk3D0xJtfO7lUJ2Yn9//549e0iMMJsqYHRoSPNv//78R4eP/uKXv/3Tn//ictovXW7//R/2vvmn/Re+/Jq1v/XWW21tbd98882hQ4cwm1+cv/izF175+QuvXO+44XG7GeSddw/96F+ffeMPe20229YoRLKYuJ3BLtZCZo8+icfNCFoFTu+jw0f+4z//+2cvvNzb1+90Oi5fuQofb/1p/+kz56D8ypUr58+fv3DhAgUo//pS25/+/A7/3bzZzeno6NhfDnzwyq9fg2/xHAs+lFtuDFBOL2xyJBKRvtq+edALMx4KhcIyGIcyx5mZGVEW9QK7mEIgQnBYrAZhG+6+q6sHdcTxE9TBsayiBHVSjC7CFkCB9rAuTilwSgMihQcRzQReZ7MUYt8YGY+bz+cXFxdxt5sCXXI56d8jYBPIrjn98CBDlLiUko+7m0IBjGo1RI1WO6zRSOmUqNwaRHfpHpuBoLBSqaBJxEpbQCwWFeqrHiNVZUlPpb/K6a6hEFVoESgTWh+0IVQmxIXIxwFWocFRLTwJWrhBqIpVg/UqRb1aULFBFm89+Ad5tgwGaXBUC7uDQlxUKpUi4dsUSP5KAN+yuMjfovTjulKlOFWOCwu0lJpJJ0pLsLBQJMXEM+HPOIoBBYggkB1QJvdto9UpRAP6+vrOnDmzhZ9aKpcWvB5PNDafzWbxGaT5hHO5fDGfy+FviAWSiQScphLzPn8gFo0mkql0KkWBq9G56EKplC8UyDJF1KeCofB2yvxaAEyppSkkcyCBO3jw4BYoLC0ULWaz3eFwOhy66SmzzT43OxcIBqSfHjObbVar2+MJhWaTiXlyifGxUYvdRV44NTmhMxicLldhYTEQlH7ZnavVv7QLhcKIKVP8tsGUWppCgZ6eHoybLMCto7JULpWrfujzAer+Gt/KynKpJDWORMJYV1Ep8JTCrQBdLNeT/jZC+qnI1f9KAS4QfXU6naTS1b+6SCgPhcrMWgBMqaUphLyOjo4PP/yw2RSWFvJE6Xg+g0Fvd9gNRpPRYkMFIc9oNFab8Q1qoRTw7AiYUktTSDjT1dV17NixZlO4XKlEQjO+QCAYDKJn4UjE6ws4HPZ4PK7T6TZLoRCuctJkMKVmUcgaWGoDKO02AHLYLYQzj4lKpRIIBLxeLywqVTIeaUi5OjIyQlgrfs6zqeAWTKlZFGIDh9eHRqMR7xOoEDsXyPwq4JQI/sqVK2pMUchn05ks0Q0ZHqoJ5EROyuqoWV5ZyWbSNKCWHI5eVFZWVkggMtmcnPRJv03OH9JErpI93l9Zjs7NxZMpbCZJxYLURbpU4xpVPJLCmmekzQZTagqFLCMajbIMgCgJDURZBZXd3d2CJNpjMGEUarVarXhULZ4eGeQfhX733XfpIgvwfnQ2TMRPWmBzOI0Gg05vsNntZAjakVGbzRlPJP1e9+jIqJQ5SBdsgxpNIp31edyTE+OaYe34+NigZmhkbNxsNN4bvKc3WEjhnXbrtNFEpujzet0uF85Pp9fHU/X/8ZtHGlKVQhSRZLSpSCaTTOkhhU+xS6FQ+BS7GM888/+D/5HTeGvu8AAAAABJRU5ErkJggg==