From 313ae3172148e86fd90eeaca2ef9a05a732ccaea Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=A0=80?= Date: Sat, 17 Feb 2024 18:10:48 +0000 Subject: [PATCH] =?UTF-8?q?XHG.=F0=94=97=A2.GHX?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../XHG.π”—’.GHX | 5353 +++++++++++++++++ 1 file changed, 5353 insertions(+) create mode 100644 π–£ βšͺα—©π”—’βˆ£π”—’α—π”—’βˆ£π”—’αΊŽπ–£“π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘ΌβšͺπŸž‹βšͺπ–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ–£“αΊŽπ”—’βˆ£π”—’α—π”—’βˆ£π”—’α—©βšͺπ–£ /βšͺ✀βšͺα΄₯βšͺα—©βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺα—©βšͺα΄₯βšͺ✀βšͺ/βšͺα—±α—΄βšͺα΄₯βšͺα—©βšͺα—―βšͺ✀βšͺκ—³βšͺβ“„βšͺα”“α”•βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺα”“α”•βšͺβ“„βšͺκ—³βšͺ✀βšͺα—―βšͺα—©βšͺα΄₯βšͺα—±α—΄βšͺ/βšͺΠ­Π„βšͺα—©βšͺНβšͺί¦βšͺα—±α—΄βšͺᙏβšͺΠ­Π„βšͺβ“„βšͺί¦βšͺ✀βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺ✀βšͺί¦βšͺβ“„βšͺΠ­Π„βšͺᙏβšͺα—±α—΄βšͺί¦βšͺНβšͺα—©βšͺΠ­Π„βšͺ/βšͺα”“α”•βšͺβ“„βšͺα΄₯βšͺα—±α—΄βšͺᑐᑕβšͺβ“„βšͺИNβšͺκ–΄βšͺ옷βšͺα΄₯βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺα΄₯βšͺ옷βšͺκ–΄βšͺИNβšͺβ“„β€Žβšͺᑐᑕβšͺα—±α—΄βšͺα΄₯βšͺβ“„βšͺα”“α”•βšͺ/βšͺα΄₯βšͺα—±α—΄βšͺί¦βšͺβ“„βšͺ옷βšͺα”“α”•βšͺα—©βšͺα΄₯βšͺᕀᕦβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺᕀᕦβšͺα΄₯βšͺα—©βšͺα”“α”•βšͺ옷βšͺβ“„βšͺί¦βšͺα—±α—΄βšͺα΄₯βšͺ/XHG.π”—’.GHX diff --git a/π–£ βšͺα—©π”—’βˆ£π”—’α—π”—’βˆ£π”—’αΊŽπ–£“π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘ΌβšͺπŸž‹βšͺπ–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ–£“αΊŽπ”—’βˆ£π”—’α—π”—’βˆ£π”—’α—©βšͺπ–£ /βšͺ✀βšͺα΄₯βšͺα—©βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺα—©βšͺα΄₯βšͺ✀βšͺ/βšͺα—±α—΄βšͺα΄₯βšͺα—©βšͺα—―βšͺ✀βšͺκ—³βšͺβ“„βšͺα”“α”•βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺα”“α”•βšͺβ“„βšͺκ—³βšͺ✀βšͺα—―βšͺα—©βšͺα΄₯βšͺα—±α—΄βšͺ/βšͺΠ­Π„βšͺα—©βšͺНβšͺί¦βšͺα—±α—΄βšͺᙏβšͺΠ­Π„βšͺβ“„βšͺί¦βšͺ✀βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺ✀βšͺί¦βšͺβ“„βšͺΠ­Π„βšͺᙏβšͺα—±α—΄βšͺί¦βšͺНβšͺα—©βšͺΠ­Π„βšͺ/βšͺα”“α”•βšͺβ“„βšͺα΄₯βšͺα—±α—΄βšͺᑐᑕβšͺβ“„βšͺИNβšͺκ–΄βšͺ옷βšͺα΄₯βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺα΄₯βšͺ옷βšͺκ–΄βšͺИNβšͺβ“„β€Žβšͺᑐᑕβšͺα—±α—΄βšͺα΄₯βšͺβ“„βšͺα”“α”•βšͺ/βšͺα΄₯βšͺα—±α—΄βšͺί¦βšͺβ“„βšͺ옷βšͺα”“α”•βšͺα—©βšͺα΄₯βšͺᕀᕦβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺᕀᕦβšͺα΄₯βšͺα—©βšͺα”“α”•βšͺ옷βšͺβ“„βšͺί¦βšͺα—±α—΄βšͺα΄₯βšͺ/XHG.π”—’.GHX b/π–£ βšͺα—©π”—’βˆ£π”—’α—π”—’βˆ£π”—’αΊŽπ–£“π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘ΌβšͺπŸž‹βšͺπ–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ–£“αΊŽπ”—’βˆ£π”—’α—π”—’βˆ£π”—’α—©βšͺπ–£ /βšͺ✀βšͺα΄₯βšͺα—©βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺα—©βšͺα΄₯βšͺ✀βšͺ/βšͺα—±α—΄βšͺα΄₯βšͺα—©βšͺα—―βšͺ✀βšͺκ—³βšͺβ“„βšͺα”“α”•βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺα”“α”•βšͺβ“„βšͺκ—³βšͺ✀βšͺα—―βšͺα—©βšͺα΄₯βšͺα—±α—΄βšͺ/βšͺΠ­Π„βšͺα—©βšͺНβšͺί¦βšͺα—±α—΄βšͺᙏβšͺΠ­Π„βšͺβ“„βšͺί¦βšͺ✀βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺ✀βšͺί¦βšͺβ“„βšͺΠ­Π„βšͺᙏβšͺα—±α—΄βšͺί¦βšͺНβšͺα—©βšͺΠ­Π„βšͺ/βšͺα”“α”•βšͺβ“„βšͺα΄₯βšͺα—±α—΄βšͺᑐᑕβšͺβ“„βšͺИNβšͺκ–΄βšͺ옷βšͺα΄₯βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺα΄₯βšͺ옷βšͺκ–΄βšͺИNβšͺβ“„β€Žβšͺᑐᑕβšͺα—±α—΄βšͺα΄₯βšͺβ“„βšͺα”“α”•βšͺ/βšͺα΄₯βšͺα—±α—΄βšͺί¦βšͺβ“„βšͺ옷βšͺα”“α”•βšͺα—©βšͺα΄₯βšͺᕀᕦβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺᕀᕦβšͺα΄₯βšͺα—©βšͺα”“α”•βšͺ옷βšͺβ“„βšͺί¦βšͺα—±α—΄βšͺα΄₯βšͺ/XHG.π”—’.GHX new file mode 100644 index 00000000..b0db66ab --- /dev/null +++ b/π–£ βšͺα—©π”—’βˆ£π”—’α—π”—’βˆ£π”—’αΊŽπ–£“π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘ΌβšͺπŸž‹βšͺπ–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ–£“αΊŽπ”—’βˆ£π”—’α—π”—’βˆ£π”—’α—©βšͺπ–£ /βšͺ✀βšͺα΄₯βšͺα—©βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺα—©βšͺα΄₯βšͺ✀βšͺ/βšͺα—±α—΄βšͺα΄₯βšͺα—©βšͺα—―βšͺ✀βšͺκ—³βšͺβ“„βšͺα”“α”•βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺα”“α”•βšͺβ“„βšͺκ—³βšͺ✀βšͺα—―βšͺα—©βšͺα΄₯βšͺα—±α—΄βšͺ/βšͺΠ­Π„βšͺα—©βšͺНβšͺί¦βšͺα—±α—΄βšͺᙏβšͺΠ­Π„βšͺβ“„βšͺί¦βšͺ✀βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺ✀βšͺί¦βšͺβ“„βšͺΠ­Π„βšͺᙏβšͺα—±α—΄βšͺί¦βšͺНβšͺα—©βšͺΠ­Π„βšͺ/βšͺα”“α”•βšͺβ“„βšͺα΄₯βšͺα—±α—΄βšͺᑐᑕβšͺβ“„βšͺИNβšͺκ–΄βšͺ옷βšͺα΄₯βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺα΄₯βšͺ옷βšͺκ–΄βšͺИNβšͺβ“„β€Žβšͺᑐᑕβšͺα—±α—΄βšͺα΄₯βšͺβ“„βšͺα”“α”•βšͺ/βšͺα΄₯βšͺα—±α—΄βšͺί¦βšͺβ“„βšͺ옷βšͺα”“α”•βšͺα—©βšͺα΄₯βšͺᕀᕦβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺᕀᕦβšͺα΄₯βšͺα—©βšͺα”“α”•βšͺ옷βšͺβ“„βšͺί¦βšͺα—±α—΄βšͺα΄₯βšͺ/XHG.π”—’.GHX @@ -0,0 +1,5353 @@ +ο»Ώ + + + + + + + 0 + 2 + 2 + + + + + + + 1 + 0 + 7 + + + + + + 2d7e6abd-318e-44d3-90ed-f36ccf41d56b + Shaded + 0 + + 255;178;178;178 + + + 255;168;168;168 + + + + + + 638437511938834599 + + XHG..GHX + + + + + 0 + + + + + + -757 + -499 + + 1 + + + + + 0 + + + + + + + 0 + + + + + 7 + + + + + Kangaroo2Component, Version=2.5.3.0, Culture=neutral, PublicKeyToken=794d913993c0f82d + 2.5.3.0 + Daniel Piker + c2ea695e-1a09-6f42-266d-113498879f60 + Kangaroo2 Components + 2.5.3 + + + + + Bengesht, Version=3.3.0.0, Culture=neutral, PublicKeyToken=null + 3.3.0.0 + + 00000000-0000-0000-0000-000000000000 + + + + + + + CORE.Toolbox.Grasshopper, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null + 1.0.0.0 + Thornton Tomasetti | CORE studio + 08b214d9-388c-4ad0-940b-716633b47e45 + CORE.Toolbox.Grasshopper + + + + + + BullantGH, Version=1.5.8.0, Culture=neutral, PublicKeyToken=null + 1.5.8.0 + Geometry Gym Pty Ltd + 2cd3c35a-cada-1a81-ddba-5b184219e513 + BullAnt + + + + + + CurvePlus, Version=1.3.0.0, Culture=neutral, PublicKeyToken=null + 1.3.0.0 + David Mans + ab81fea9-8d16-4caf-af89-2736c660f36d + CurvePlus + 1.2.0.0 + + + + + Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null + 0.4.0.0 + Mateusz Zwierzycki + 4442bb24-c702-460c-a1e4-fcdd321eb886 + Anemone + 0.4 + + + + + Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null + 3.0.0.0 + Michael Pryor + 1c9de8a1-315f-4c56-af06-8f69fee80a7a + Pufferfish + 3.0.0.0 + + + + + + + 35 + + + + + a412ddf4-4899-4456-8325-f3f9a8134a25 + c2ea695e-1a09-6f42-266d-113498879f60 + interconnectPoints + + + + + Draws one line between every pair of points in a list + true + b7c9e6cb-4bb9-4371-9266-c5153a7f8365 + interconnectPoints + interconnectPoints + + + + + + 287 + 125 + 123 + 28 + + + 319 + 139 + + + + + + 1 + list of points to interconnect + 9c9ce252-f9cc-4627-841b-a146d82ffb23 + pts + pts + false + c3463bd2-7be6-4ccd-a904-ef1db82b5b5c + 1 + + + + + + 289 + 127 + 18 + 24 + + + 298 + 139 + + + + + + + + 1 + interconnection lines + 89099b9a-c316-428a-b85d-887b11512d54 + interconnections + interconnections + false + 0 + + + + + + 331 + 127 + 77 + 24 + + + 369.5 + 139 + + + + + + + + + + + + 717a1e25-a075-4530-bc80-d43ecc2500d9 + Square + + + + + 2D grid with square cells + true + e276bd82-4179-4dd0-bcda-e12f8c2e9fe5 + Square + Square + + + + + + 61 + 65 + 202 + 101 + + + 202 + 116 + + + + + + Base plane for grid + 476cb35f-b09f-4b34-8b0b-2ed6d62a7d5e + Plane + Plane + false + 0 + + + + + + 63 + 67 + 127 + 37 + + + 126.5 + 85.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Size of grid cells + 74a0ffe3-5ee6-444f-bf0b-df90c935f2dd + Size + Size + false + b4bd3dcc-b047-4786-9195-75f776ceebda + 1 + + + + + + 63 + 104 + 127 + 20 + + + 126.5 + 114 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Number of grid cells in base plane x direction + 2ed05fe6-71ff-47eb-8c8f-85c6130b2e65 + Extent X + Extent X + false + 0 + + + + + + 63 + 124 + 127 + 20 + + + 126.5 + 134 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Number of grid cells in base plane y direction + 77ec3307-a57f-4b0a-a586-f2a2c2c026ea + Extent Y + Extent Y + false + 0 + + + + + + 63 + 144 + 127 + 20 + + + 126.5 + 154 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Grid cell outlines + bf3d7fc7-870f-4fa4-b273-a6186a46a8a8 + Cells + Cells + false + 0 + + + + + + 214 + 67 + 47 + 48 + + + 229.5 + 91.25 + + + + + + + + 2 + Points at grid corners + true + c3463bd2-7be6-4ccd-a904-ef1db82b5b5c + 1 + Points + Points + false + 0 + + + + + + 214 + 115 + 47 + 49 + + + 229.5 + 139.75 + + + + + + + + + + + + 59daf374-bc21-4a5e-8282-5504fb7ae9ae + List Item + + + + + 0 + Retrieve a specific item from a list. + true + 60d04b76-c516-43d1-9233-507bfab1c389 + List Item + List Item + + + + + + 478 + 56 + 72 + 64 + + + 530 + 88 + + + + + + 3 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + cb95db89-6165-43b6-9c41-5702bc5bf137 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 1 + Base list + 1c757269-c29c-442a-a953-e7beb2472db3 + List + List + false + 89099b9a-c316-428a-b85d-887b11512d54 + 1 + + + + + + 480 + 58 + 38 + 20 + + + 499 + 68 + + + + + + + + Item index + 388db8e7-6270-4bf5-8eb7-0f288b3083ed + Index + Index + false + b12c9165-401a-469b-94ae-a2900d9e0e5b + 1 + + + + + + 480 + 78 + 38 + 20 + + + 499 + 88 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + Wrap index to list bounds + 96cdfa6b-8e05-4cb3-9b8a-d3c6da337e5b + Wrap + Wrap + false + 0 + + + + + + 480 + 98 + 38 + 20 + + + 499 + 108 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + Item at {i'} + 7701d83b-c949-494f-8aa5-0c880ee94505 + false + Item + i + false + 0 + + + + + + 542 + 58 + 6 + 60 + + + 545 + 88 + + + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + b12c9165-401a-469b-94ae-a2900d9e0e5b + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 11 + + 1.0 + + + + + + 88 + 283 + 250 + 20 + + + 88.6507 + 283.048 + + + + + + + + + + 4c0d75e1-4266-45b8-b5b4-826c9ad51ace + 00000000-0000-0000-0000-000000000000 + Divide Curves on Intersects + + + + + Divide curves on all of their intersects. + true + adda5a6b-96fb-48be-90cc-5cbab44d2dce + Divide Curves on Intersects + Divide Curves on Intersects + + + + + + -44 + 320 + 174 + 44 + + + 83 + 342 + + + + + + 1 + curves to be divided + 9a67e5a7-0450-4c73-9099-b5081ecb3d09 + curves + curves + false + d35a32c8-d648-4f3e-bf1e-67f34192b7ac + 1 + + + + + + -42 + 322 + 113 + 20 + + + 14.5 + 332 + + + + + + + + ZeroTolerance + 520ac281-a9af-4472-a46c-daed86e961ca + Tolerance + Tolerance + false + 0 + + + + + + -42 + 342 + 113 + 20 + + + 14.5 + 352 + + + + + + 1 + + + + + 1 + {0} + + + + + 1E-10 + + + + + + + + + + + 1 + aligned curves + 225b2e81-bb3c-40b3-9329-93ce337b321e + curves + curves + false + 0 + + + + + + 95 + 322 + 33 + 40 + + + 111.5 + 342 + + + + + + + + + + + + dc8aee5e-da26-45f0-b2c8-612fcf84157e + 08b214d9-388c-4ad0-940b-716633b47e45 + Clean Duplicate Lines + + + + + Removes duplicate lines in a list + true + 0d09dc8c-f43f-4672-9da2-1c3860312253 + Clean Duplicate Lines + Clean Duplicate Lines + + + + + + -37 + 406 + 176 + 64 + + + 90 + 438 + + + + + + 1 + Lines to check for duplicates + c8a413e3-366b-499a-a6df-f2b02f2216d8 + Lines + Lines + false + 225b2e81-bb3c-40b3-9329-93ce337b321e + 1 + + + + + + -35 + 408 + 113 + 30 + + + 21.5 + 423 + + + + + + + + Distance check tolerance + a7d4f1fd-0a13-475e-9b47-2eaa8cc3bdbb + Tolerance + Tolerance + true + 0 + + + + + + -35 + 438 + 113 + 30 + + + 21.5 + 453 + + + + + + 1 + + + + + 1 + {0} + + + + + 1E-10 + + + + + + + + + + + 1 + Filtered lines + 7a40ed94-4034-4baf-9d52-28b709afe67f + Lines + Lines + false + 0 + + + + + + 102 + 408 + 35 + 20 + + + 119.5 + 418 + + + + + + + + 1 + Mapped Indices + aa5b2555-e8f1-4991-b842-6aff1bb4207b + Indices + Indices + false + 0 + + + + + + 102 + 428 + 35 + 20 + + + 119.5 + 438 + + + + + + + + 1 + The value will be false if the line was removed. + 729e2add-f50f-414c-8805-b41c4551375c + Status + Status + false + 0 + + + + + + 102 + 448 + 35 + 20 + + + 119.5 + 458 + + + + + + + + + + + + 8307c31e-e307-48e9-b7c3-f970591e86d2 + 2cd3c35a-cada-1a81-ddba-5b184219e513 + ggNetworkPolygons + + + + + Polygon from Curve network + 6259c7b3-8821-4465-983f-0047ce3e407e + ggNetworkPolygons + ggNetworkPolygons + + + + + + 359 + 240 + 134 + 44 + + + 454 + 262 + + + + + + 1 + Input Curves + 03fb8fdb-652c-43aa-9a5f-1e45f5198d49 + Curves + Curves + false + 0914e9a9-0860-462f-a9a9-8fd802b53dbd + 1 + + + + + + 361 + 242 + 81 + 20 + + + 401.5 + 252 + + + + + + + + Number of edges considered to be a void or perimeter location + e8f731ae-a988-4e99-8b31-65b261bb43bc + Perim or Void + Perim or Void + true + 0 + + + + + + 361 + 262 + 81 + 20 + + + 401.5 + 272 + + + + + + 1 + + + + + 1 + {0} + + + + + 5 + + + + + + + + + + + 1 + Resultant Polygons + 998f0269-1acc-48ed-9365-92d8ce09be2d + Cells + Cells + false + 0 + + + + + + 466 + 242 + 25 + 40 + + + 478.5 + 262 + + + + + + + + + + + + d6d9b934-83b2-452d-ab0c-87fc73a03ac5 + ab81fea9-8d16-4caf-af89-2736c660f36d + Smooth Corners + + + + + Smooth the corners of a segmented curve by unitized parameter + true + bb26af02-1ab6-4b01-9780-2641a985a95f + Smooth Corners + Smooth Corners + + + + + + 603 + 199 + 222 + 64 + + + 728 + 231 + + + + + + Curve to Smooth Corners + a80c8268-0ed7-4c16-b891-e57a3cb53997 + Curve + Curve + false + 5adc9ffe-2560-45aa-8c0b-07f8c3e65be5 + 1 + + + + + + 605 + 201 + 111 + 20 + + + 660.5 + 211 + + + + + + + + A unitized curve parameter between 0-1 + 171f4205-905f-4693-ba0a-33a6827d93f7 + Parameter + Parameter + true + d49629e2-dca4-428c-9dfd-e1563a8c54bd + 1 + + + + + + 605 + 221 + 111 + 20 + + + 660.5 + 231 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.5 + + + + + + + + + + + Blend Continuity Type + 6a84a4d6-5b4f-4cb8-9925-7b1f44a36900 + Continuity + Continuity + true + 0 + + + + + + 605 + 241 + 111 + 20 + + + 660.5 + 251 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + The smoothed polycurve + dcb47632-c0dc-43b3-af1b-1f3bd7133adf + Compound Curve + Compound Curve + false + 0 + + + + + + 740 + 201 + 83 + 60 + + + 781.5 + 231 + + + + + + + + + + + + 57da07bd-ecab-415d-9d86-af36d7073abc + Number Slider + + + + + Numeric slider for single values + d49629e2-dca4-428c-9dfd-e1563a8c54bd + Number Slider + Number Slider + false + 0 + + + + + + 261 + 211 + 275 + 20 + + + 261.2587 + 211.7214 + + + + + + 8 + 1 + 0 + 1 + 0 + 0 + 1 + + + + + + + + + 7cd2f235-466e-4d30-bd3c-3b9573ac7dda + 4442bb24-c702-460c-a1e4-fcdd321eb886 + Fast Loop Start + + + + + Loop Start + true + 40090408-1902-4d05-a2d3-edf4720c8d9d + Fast Loop Start + Fast Loop Start + + + + + + 571 + 347 + 112 + 64 + + + 630 + 379 + + + + + + 2 + 2e3ab970-8545-46bb-836c-1c11e5610bce + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3 + 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 + 2e3ab970-8545-46bb-836c-1c11e5610bce + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Loop iterations + ee795da6-4920-41c2-8c96-7c5e8c49f5b4 + Iterations + Iterations + false + 048914a0-5152-43c2-afd1-faa9d7147aef + 1 + + + + + + 573 + 349 + 45 + 30 + + + 595.5 + 364 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + 2 + Data to loop + db208c9c-84ef-4afd-b24b-5f42ae733c7b + Data + Data + true + 998f0269-1acc-48ed-9365-92d8ce09be2d + 1 + + + + + + 573 + 379 + 45 + 30 + + + 595.5 + 394 + + + + + + + + Connect to Loop End + bf4a2645-019e-480b-afee-8fb72cebb472 + > + > + false + 0 + + + + + + 642 + 349 + 39 + 20 + + + 661.5 + 359 + + + + + + + + Counter + 2ec5e5c0-0ead-41cd-a44a-b277774aae7d + Counter + Counter + false + 0 + + + + + + 642 + 369 + 39 + 20 + + + 661.5 + 379 + + + + + + + + 2 + Data to loop + 5adc9ffe-2560-45aa-8c0b-07f8c3e65be5 + Data + Data + false + 0 + + + + + + 642 + 389 + 39 + 20 + + + 661.5 + 399 + + + + + + + + + + + + + + 4e5b891f-3e8d-4b3d-b677-996c63b3ac70 + 4442bb24-c702-460c-a1e4-fcdd321eb886 + Fast Loop End + + + + + Loop End + 1cd2d97c-20c4-4041-841c-c610b7ddbbda + Fast Loop End + Fast Loop End + false + 0 + + + + + + 855 + 304 + 88 + 64 + + + 904 + 336 + + + + + + 3 + 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 + cb95db89-6165-43b6-9c41-5702bc5bf137 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Connect to Loop Start + 2c10f295-343b-4fec-9b8d-348258c268a4 + < + < + false + bf4a2645-019e-480b-afee-8fb72cebb472 + 1 + + + + + + 857 + 306 + 35 + 20 + + + 874.5 + 316 + + + + + + + + Set to true to exit the loop + b7603821-ebca-433f-8887-eac5688ae8a0 + Exit + Exit + true + 0 + + + + + + 857 + 326 + 35 + 20 + + + 874.5 + 336 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + 2 + Data to loop + 5f1d7de0-5a2a-4e59-987c-4aeff92e2fc8 + Data + Data + false + a3400721-adb8-4b7f-b6bd-5f04a6dcbd57 + 1 + + + + + + 857 + 346 + 35 + 20 + + + 874.5 + 356 + + + + + + + + 2 + Data to loop + 715f6ab9-fbde-4be9-929d-c73fac2e4d22 + Data + Data + false + 0 + + + + + + 916 + 306 + 25 + 60 + + + 928.5 + 336 + + + + + + + + + + + + + + 31de0644-5f01-4706-ab19-dc148215029c + 1c9de8a1-315f-4c56-af06-8f69fee80a7a + Prude Curve + + + + + Removes the kinky parts of a curve (discontinuities) by blending the curve segments togther, if curve already has no kinks it will output with no change. + true + c4c6005c-f1fb-460f-8409-2ef3b6e044a8 + Prude Curve + Prude Curve + + + + + + 694 + 387 + 169 + 84 + + + 778 + 429 + + + + + + Curve to remove kinks from + 5cb0c477-3c5d-4ddb-ae03-7a105f57e638 + Curve + Curve + false + 5adc9ffe-2560-45aa-8c0b-07f8c3e65be5 + 1 + + + + + + 696 + 389 + 70 + 20 + + + 731 + 399 + + + + + + + + Length along curve from kink to blend start (if omitted document tolerance is used) + 86428436-67f4-46a3-95c0-aad729aca2c2 + Length + Length + false + d49629e2-dca4-428c-9dfd-e1563a8c54bd + 1 + + + + + + 696 + 409 + 70 + 20 + + + 731 + 419 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.001 + + + + + + + + + + + Determines how kinks are blended + +0 = Tangency +1 = Curvature + 8e253715-5f17-4946-a61b-2a1040e76ff4 + Blend Type + Blend Type + false + 0 + + + + + + 696 + 429 + 70 + 20 + + + 731 + 439 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Bulge factor for kink blend + 7b912783-106d-44e1-9060-a7d055c344ea + Bulge + Bulge + false + 92c0f547-396e-4d79-9b0b-35f56346016b + 1 + + + + + + 696 + 449 + 70 + 20 + + + 731 + 459 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.5 + + + + + + + + + + + Resulting curve without kinks + a3400721-adb8-4b7f-b6bd-5f04a6dcbd57 + Prude + Prude + false + 0 + + + + + + 790 + 389 + 71 + 40 + + + 825.5 + 409 + + + + + + + + True if kinks were removed from curve, False if curve already had no kinks + f7840439-a0dd-4897-81b9-a0839807c482 + Result Boolean + Result Boolean + false + 0 + + + + + + 790 + 429 + 71 + 40 + + + 825.5 + 449 + + + + + + + + + + + + ae669eaf-5e14-43f2-b944-5d7c8e02759e + ab81fea9-8d16-4caf-af89-2736c660f36d + Smooth Corners by Distance + + + + + Smooth the corners of a segmented curve by distance + true + 2565d5d0-c744-431f-b36a-d6aa73677c72 + Smooth Corners by Distance + Smooth Corners by Distance + + + + + + 605 + 107 + 221 + 64 + + + 729 + 139 + + + + + + Curve to Smooth Corners + 5cc39e71-06ea-4f04-b509-64de7b91c3fe + Curve + Curve + false + 5adc9ffe-2560-45aa-8c0b-07f8c3e65be5 + 1 + + + + + + 607 + 109 + 110 + 20 + + + 662 + 119 + + + + + + + + The distance from the corners to blend from + cf88f582-04d7-4060-85b4-b59ebf7fee7b + Distance + Distance + true + d49629e2-dca4-428c-9dfd-e1563a8c54bd + 1 + + + + + + 607 + 129 + 110 + 20 + + + 662 + 139 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.1 + + + + + + + + + + + Blend Continuity Type + b0a93e2c-1251-489c-a556-26268c0c6541 + Continuity + Continuity + true + 0 + + + + + + 607 + 149 + 110 + 20 + + + 662 + 159 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + The smoothed polycurve + 377af979-cc7e-4e0d-8b02-881bb99aa27c + Compound Curve + Compound Curve + false + 0 + + + + + + 741 + 109 + 83 + 60 + + + 782.5 + 139 + + + + + + + + + + + + 57da07bd-ecab-415d-9d86-af36d7073abc + Number Slider + + + + + Numeric slider for single values + 92c0f547-396e-4d79-9b0b-35f56346016b + Number Slider + Number Slider + false + 0 + + + + + + 367 + 433 + 275 + 20 + + + 367.0751 + 433.3469 + + + + + + 8 + 1 + 0 + 1 + 0 + 0 + 0.5 + + + + + + + + + d114323a-e6ee-4164-946b-e4ca0ce15efa + Circle CNR + + + + + Create a circle defined by center, normal and radius. + b2a5d0b5-bf1d-4e92-9ebc-64e96e806704 + Circle CNR + Circle CNR + + + + + + -14 + 516 + 184 + 64 + + + 127 + 548 + + + + + + Center point + 342c9633-17f5-472f-acad-6294286aa6ec + Center + Center + false + c3463bd2-7be6-4ccd-a904-ef1db82b5b5c + 1 + + + + + + -12 + 518 + 127 + 20 + + + 59.5 + 528 + + + + + + + + Normal vector of circle plane + 9d4f7b5a-2594-48f5-a94a-e29cbd535dba + Normal + Normal + false + 0 + + + + + + -12 + 538 + 127 + 20 + + + 59.5 + 548 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 1 + + + + + + + + + + + + Radius of circle + 205432ec-6b03-4d76-91ad-f1ddae434098 + X/4 + Radius + Radius + false + b4bd3dcc-b047-4786-9195-75f776ceebda + 1 + + + + + + -12 + 558 + 127 + 20 + + + 59.5 + 568 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Resulting circle + 6a6a3dee-b2d6-4507-98dd-2dcbc639e090 + Circle + Circle + false + 0 + + + + + + 139 + 518 + 29 + 60 + + + 153.5 + 548 + + + + + + + + + + + + 57da07bd-ecab-415d-9d86-af36d7073abc + Number Slider + + + + + Numeric slider for single values + b4bd3dcc-b047-4786-9195-75f776ceebda + Number Slider + Number Slider + false + 0 + + + + + + -186 + 7 + 275 + 20 + + + -185.5392 + 7.568115 + + + + + + 0 + 1 + 0 + 1 + 0 + 0 + 1 + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + d35a32c8-d648-4f3e-bf1e-67f34192b7ac + Relay + + false + 89099b9a-c316-428a-b85d-887b11512d54 + 1 + + + + + + -51 + 249 + 40 + 16 + + + -31 + 257 + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + af3c0e57-c456-48d1-a214-80453d85cf89 + Merge + Merge + + + + + + 279 + 495 + 90 + 64 + + + 324 + 527 + + + + + + 3 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + f7863fc3-5e60-4dfb-84eb-c47c688e549c + false + Data 1 + D1 + true + 7a40ed94-4034-4baf-9d52-28b709afe67f + 1 + + + + + + 281 + 497 + 31 + 20 + + + 296.5 + 507 + + + + + + + + 2 + Data stream 2 + 63e7b12f-83b0-4ef2-a6d6-6bfc88cf97e2 + false + Data 2 + D2 + true + 6a6a3dee-b2d6-4507-98dd-2dcbc639e090 + 1 + + + + + + 281 + 517 + 31 + 20 + + + 296.5 + 527 + + + + + + + + 2 + Data stream 3 + 6177d5ac-0927-4593-a79e-849371c44ad9 + false + Data 3 + D3 + true + 0 + + + + + + 281 + 537 + 31 + 20 + + + 296.5 + 547 + + + + + + + + 2 + Result of merge + dfd3bc1f-d28f-4b24-af34-1a9f10ff293c + Result + Result + false + 0 + + + + + + 336 + 497 + 31 + 60 + + + 351.5 + 527 + + + + + + + + + + + + + + 4c0d75e1-4266-45b8-b5b4-826c9ad51ace + 00000000-0000-0000-0000-000000000000 + Divide Curves on Intersects + + + + + Divide curves on all of their intersects. + true + 165b557f-d908-472c-b448-9ef9d68a4852 + Divide Curves on Intersects + Divide Curves on Intersects + + + + + + 225 + 370 + 190 + 44 + + + 368 + 392 + + + + + + 1 + curves to be divided + 1a23e81d-4390-458f-92e5-6659ca0997b6 + 1 + curves + curves + false + dfd3bc1f-d28f-4b24-af34-1a9f10ff293c + 1 + + + + + + 227 + 372 + 129 + 20 + + + 299.5 + 382 + + + + + + + + ZeroTolerance + 4620c361-569f-4bd0-990c-41a5e8a26aa8 + Tolerance + Tolerance + false + 0 + + + + + + 227 + 392 + 129 + 20 + + + 299.5 + 402 + + + + + + 1 + + + + + 1 + {0} + + + + + 1.1641532182693481E-10 + + + + + + + + + + + 1 + aligned curves + 0914e9a9-0860-462f-a9a9-8fd802b53dbd + curves + curves + false + 0 + + + + + + 380 + 372 + 33 + 40 + + + 396.5 + 392 + + + + + + + + + + + + 8073a420-6bec-49e3-9b18-367f6fd76ac3 + Join Curves + + + + + Join as many curves as possible + true + 8651991b-123a-4c65-94ed-d3d970905907 + Join Curves + Join Curves + + + + + + 453 + 497 + 116 + 44 + + + 520 + 519 + + + + + + 1 + Curves to join + 50d7257a-12af-4a94-aff0-7187ef3e9be2 + Curves + Curves + false + 0914e9a9-0860-462f-a9a9-8fd802b53dbd + 1 + + + + + + 455 + 499 + 53 + 20 + + + 481.5 + 509 + + + + + + + + Preserve direction of input curves + dfb5a32a-ec78-44f6-9532-e44e43fcca46 + Preserve + Preserve + false + 0 + + + + + + 455 + 519 + 53 + 20 + + + 481.5 + 529 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + 1 + Joined curves and individual curves that could not be joined. + a99cf68c-4a59-42e8-ba70-98734e713f5a + Curves + Curves + false + 0 + + + + + + 532 + 499 + 35 + 40 + + + 549.5 + 519 + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 048914a0-5152-43c2-afd1-faa9d7147aef + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 11 + + 0.0 + + + + + + 230 + 322 + 250 + 20 + + + 230.917 + 322.4928 + + + + + + + + + + 1a38d325-98de-455c-93f1-bca431bc1243 + Offset Curve + + + + + Offset a curve with a specified distance. + true + cc464d02-c936-49ff-9085-3f60a88c5b0b + Offset Curve + Offset Curve + + + + + + 1042 + 282 + 178 + 101 + + + 1176 + 333 + + + + + + Curve to offset + ba28349f-96cd-4a99-b9bb-f0dc9c46a234 + Curve + Curve + false + 715f6ab9-fbde-4be9-929d-c73fac2e4d22 + 1 + + + + + + 1044 + 284 + 120 + 20 + + + 1104 + 294 + + + + + + + + Offset distance + f33be44e-391d-4985-b711-70628e351f5b + Distance + Distance + false + 0 + + + + + + 1044 + 304 + 120 + 20 + + + 1104 + 314 + + + + + + 1 + + + + + 1 + {0} + + + + + -0.0215 + + + + + + + + + + + Plane for offset operation + 564b3925-6047-4abc-8d10-88a517c8b7aa + Plane + Plane + true + 0 + + + + + + 1044 + 324 + 120 + 37 + + + 1104 + 342.5 + + + + + + + + Corner type flag. Possible values: + +none = 0 +sharp = 1 +round = 2 +smooth = 3 +chamfer = 4 + aab422d4-2a13-440e-ab95-7dca53260739 + Corners + Corners + false + 0 + + + + + + 1044 + 361 + 120 + 20 + + + 1104 + 371 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + 1 + Resulting offsets + 6b3a87a6-ec83-4756-b96e-f9556b83fd1d + Curve + Curve + false + 0 + + + + + + 1188 + 284 + 30 + 97 + + + 1203 + 332.5 + + + + + + + + + + + + f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a + Offset Variable + + + + + Offsets a curve with a range of values + + + tHiWWwpy2eacD9WlyyCbu8c0YhkGLAzTM3c7T+eOEdzVi/ZUrvTm/UaTEdFhqYYRY1/FPb90Jp6g8vBdz//hRRDbCWkqYWPaL9+X9k1/C2zXAurJ127QhxYOLvZNEeo44mKJJMFdADRrg8onts79ycU66UmKatofXhgyMUXQ6y5juluq6t/KVIybFEndK7omQeLqR2KhoD7Lk90JFYMYYZyA61DGVjSpo+QoesFEFXl9ezDmniJIxYZkt2ecfLlPu9GgzsLt/HDoH+7FCWNV4GXv85k36B08s+NGH//e5hjf0udaq8/bE5emRLw8nmFbK/TyapROMA40xDrSXFcFzNbUBmwmuHPaXyTHG2784GZe06PFybebmMXo8kzN6Un4tg//9UcIMS/w0wSNRXJoNZ4RviOAVgmsTqmIMI2PcJj4PzufFtatNkeJLs961p0qXzrH9kLMUp0pMN2puspXz0pEyPia0cexZCUuX7cpdI7DIui+3sM7W+p9BXbtmsPR2YialyWXVCJgAgOk6ZC1gLtwtm4Dq539E+Hs9Dz+cl6sAtTuGPJU7frPF10TfjDjAFLuWp7TG1Ide9yMnr7RQwfy22yyRM8JzFf9uG96eKYzjT79RduWT6M+348OS2i/f+LmrlWUjKLYWULNcSI1BQuPQ2nGNvAHjHaCqm7Ny9ibPZ4Qim41iBzsSTwG/4Ba+xkqJMGN9pDDuPP8KzLmDgI6zkGh/1SiAC1ZwRiXc7U5BNMtO/pc1irz58r0cLiDS8+dZzDVLBLIy18dzzZ/G3irbn03i0gKYrulAMblrMa0mOjji/YptU8jsdtieQMK+Nmvtr5r8D8pOK9Tc9C+nlM/ojgbbjHxWFuUfEWU/BhvNb7aDNzB0qDT3QfdNH4g0fIcxg3fqq26OUaTXeSiI3V6X44m7cTLwumM8lwE3e+ZHJX/EuvBLsZhUytY65NRDx7vW95p9oL2NIWEIvQGKoA9wlPDkeFk957CcQmrBgwj9XXeV+5BEq+u6TIhx+GEfnkszVE5tAsjgOjsnZJyiYxGJw/32wTxdvi5BQO+4eFE9icPJJpvZh+1+bvkb1qfsJRbghQiGwu5d+xeI/EHan1EqxIIsUdQRUZ314fCcA06eloyB3Q21+fX7kKwSyJ3NsnOidCE7UZCm2Is1lRj7kDD8hc4D5NE+4nD1o86lq8RPIpSSBdU+6IGCJRcnoPROVMxJdXo17UIEFB9teDS59wDDREQQ4wi0mwoKtcOw0wf9Zi3+YH7DylXkrQsOmhxx3CuaVp5RbPhrOsYuzojNS9ampqKwx4GyqTJgoMbzs3jzKBsbys1OI2WjKLvZltfRH2RGUgFF5xMHyW31U3XeR6oAmwMx8fjYg6cUiZdL25zPfK/8krA4Ni2rYHRa1UHQ5MOrkEQzsGZND3NBGup0Tc43PaurPS6moMqRclAMCZOh5kqvNWuvmpdqnkY8SQ4CbQlB9RJvtOMMe0v+6+Ky7faVBxsG6MX8bwRQHB8H8MxhqxxWRy0GR4iYEMQAXMoPla6N6DUt+Dmb1uPYNEx8hCcaZSK2M3Yb0mt9zKBoRoMoHBqKZ+7fMKCJdS/7e1rLIyW+fsVwXZ75wPqqCyOGyMzqZAhoWeptFEKqeC3Leca6xGopPxESKF9psp9Xnld5phgk9FrhQNvkSBQ2EaPUgvfa6dkmfi0QD5gcdKpCG1vhFN/eioGprOh/b0WJTpQPgJCjlOPGlVryx+aw7EuGx4aEBCTvap+lRtd8mZQ5bl1JZtLELsiULy4BysqVClF1Un6RIbUEyP7VYbRO54yqlGeOWQmmF9ZTUgWGP33Yc1dG7cT5jf7stQdVSawMsSlZ/nCtLZi3kkFYJy0Ho8XsRdUXB5oM4BQn/CoHhXey5sLry8+t5esuHGqoa7nbX+nFvcP1KK2w0Z8aQbZ+4YjSxHQu4HqhuqvlpfVWR/tDRqZ/7Gw7hAD85Gu0Oq93hR+2xac9VJCWsPlehSXlQdbNB+f7LgVQSGaJc0LD2y+GVPEykKWQu8UzEckoC+QS6JyHDRjebzqj0TtfuJT6yGDeICLvlxRi7H1SXVpZcGZiSNNE5YDjEMtfgNUkjHxJv0aT3gov8I60izOignUtz2ooXbMYLpTdoNHuWKQVI1wwZrLZVeOgQKQkNFOF1o7bU7xAUOwoyyAHKiWgG90lnVqikTYK/koft+ltrYOunTL8rmWeqpqzUsMJX05c6amiDNAhH52quPalhFspoLtyc8oNeAZxMDjN+B7WkNZvZHM3iZbprNuMdaGMDoMTBl1OccJms6IIllDHx5F+icLm8WsWLI9m3Vjkjt4P5KXVtBAJcEBVvX0/qSPHZanO91ahUBHdursS5GjtuNU0l/x0WrH8e0W+fM8qLen5Wb3es11miKzOA/CZSHggCsgLZ7D6pRnuH2dICcLfv8drplDfpRGoxpSeW580ZaQ21kvlmtCO7BUOP3tj7nJI9rxm3RQtQVzg+0Mpmp4F5NN6HVyHI0vQPWxaWdyLJvzPy/q3rd/tZQngOTq5d/pBdDEBP9jegjyVPjiAnyyGMGxUcStBAzvUNidA07K166apxDXdNzk+CMfCkgpQ8YP8zc227HEsZSiWqm54RFyg7C21Nj0LWHx2Au6owRHZlmeappuIMyrOZJNorMEbDKbyeSDjfSac9lnhM2Mh4FPNhUZ72rfbZgrTYEba07nA9XW321ahg+HHsENVd3VJMPPAdA//wEXlEK2mNDMYhTKTq+4FaUvKH1xHg+pTEASVArMuNqoiNlE7efHA4Iw/6T8mfGtoMZocJd9GjyiirReSO0kH3I7axi4JcBJVHHIOvt1oSpQiFCp/HYfqqsV6Rg+JUN2mxtK2b8AinOQfj6aOuEWt7e7QwJcDQ8mq8e73Zzug2dkyiEBq/5W/Koiz1ktyNez9Bq3s+sth9IdBbMkbjSN05XlgaaaSll7oFwQlDLCWv65r1YibiFXwecF1RoALlaztjiHG8R4Avt83xVkxoY6UTdhJbG8+Gc73C9eP34DICH7BygtS07e54b6RrCO7gamBpmvR7ZJCB3KYc7+Lk2EcrJPQmGKXlcdVqVjIgZobcEqi/c0HoLKf5jfbaShPr6fTm7q3sPas9KJorE49Wyxz9pKjS3YYx/c0I+HY67RDRynhEXeKZA6qlSr5KbS1s7Em4dIy33dyjLU68NB8hL9ZEadS0DMAtk71ssSGkV7pdYNH9ymPs9kfL+RnEJ0YKbDEtZijlHb79mSYeP8fdycD0wclkdlfJ6H3s3KUWQJQxKdZGEA9rdyUQb4yv5DoNsJu84obwa+YtmBj+soE+dGJdlqVHYBDK+Ii0/2tes6nijRXv1vEM+rhE9voHtxbEWLRzUaFweWOAFgtLSa5byKTeYtH6s9mN5ePG+IuC4ePEMHjhDxr1sdveRXc6tTF5nmMDYIYFSoiCCFGN/N8ecc1sIsjjidatYj9i6f+8nzszpR9LRO2uSD1kQVZDNVeF5WKtkXLd8wDasZTUhx5wque7Q65b6ifEF0bbH6MA96P99TPjqWPIuMb1SYIaY7A37yus3Zrs7Tsr76eV+wZuKiaIDrb2IncgTRBgqys9VjC/wPviuXkMOFMIpdh7iZhy0iLtmfHlYiY6uTYcR+Ov0v6rUfKs+MEjDCg69VOnZG3MztEwPZyT3fQgEimTIIjEV0vXyzcllT6v9DUSVcKXP+7jz87SIEWutoiaiZ8kZKsFQ7+RPyfi2n595sRkbChpYhqQ3VsGP9ly1FelX6xBW/ezEyojUwaV7QzKDc8MG13BYKeYu80LbcuwpULhTOpCLGDTh4gVnMvTRaS4Rwrzx3DsW7kf+NQthl5hTleAGpCI13fV2rdO+e/0Jhpb2rFMQeN8R5FXzv3xLhRTUAwFFgHMWmv+tPrPcbGCbtpcm5YOZKGJsCZJcZ8vs8PlZ3S34lKM9Y6j2UVroCGTtACpzZ3l23QVEw1CpAy1lDwpXPWHU4WCSTKjMD9UJdJ1MaYZvoExOpcmNj8AmYkvlokpRoZLE8LScG4mpBHLBQwHHYfiCoSBqzAoVOYvcc2nyu4y11RyNO8LD2gK1L5jO3uOTB6BUqmWWTCO2ZoCzX2IRsU/xcuzN8X8mv/3vIkhfpXIPXFjvbDw1C0czR1YEDIoQJFLM9ifCcKNohNHwwFzLl9RxXicn/jmwXHUFU9lmZJNHv/Expti+PN42PmSjRjiW+hnvXNAQLonI/uirHAjNDmmOK/lGS6Ur77bcJrzXTO/0MUhJ5nQEtECGCJRruZAmV1hNQX8VH+KCjQ/XcydSKRaNiu+xbVn8+l970+OHIJVHzc+lHg0Q/gIWgRJIBe9TTc1jdBeYuG2+H4jdwjmUtEYV1UsJcwWNhbZt2iqX1nOlzL3WR/TjnCzB3Uc6J5CezUE/ROOinveO5Y1UzKtjwBm1gRRaemAKAQY8Sl6qPj9GALD8jShWYSuPFvpkcxFyFN2bBsLu5PUQwptQAzaaMhsor2l+RFsSRxEO7IWIJ5+AscRdTnBm98Xib4l83JKPcM5gPuEaSqp1gn+BtCEGGU1UTT26Y9OnSEeFSulmoDilmsrdlZFdW886NrMcuDb36VChk4qMhIpI3zY92KbaTGptzvRQTc1KjtYfKrjjZpk/hFszV5joilXG9mV+jKdoUorIeGeYJhJGdxwUgjk1VXxz/9yiZyGKykAtDdqag7O68+ekJqdIoSJVdKR9x4P41JTgNDpNyjYV8iKw1KaUn7vnMhnG0VzXr+8I+E6DEq736g+fcPmST7o9FCNx+F2PrZXxEdM4k6kGbeDGufYhABbHN1hV/dFU+brLC+TtbH3m97oCzT+WXzK7WnTWZU5pPryIT7BYOgy2JEjSanM7r4lIo1nIwp++g4KbFxCx/3xfpCiV8EQgsQXGAxhT8VQbVdRY+633faV140yz+0eq3LRsPiwq14l+TVM5W2tE9EX7XqbiAbZjeWvtAMXhIcR1S4d+Nc8iKMPtiBEXJir1w3dwBV/Z4qYbGUKH9LoYWyEvdNy9PYxu7V/0Ktw4Vj04qC7mkZWvonmnCXv/5aAX24f5xCNJe4JlP7L3Q2T7OcoWRJR4Jr6UJFKMSUaN+o89O/HX2bAZ1jOKisltAmz5z7HSZvvr33gor0gfOvG5PTCoWt4iMBZdJzwdVYGKO8IN4rPMs6l6VNTizCpxVqxlTVcpBFSv+HN+GcPvmDNSkRki3d+5rvyKQGe/UJUoKV1ND8ncLiuBOG1UZK4l6oP37aTvJhqAb58PVguAf4rz9S6JdqPT7ROzbBZx2b5tjWhNd/BdxMG6qITWDaIUBrm1BaONq9JK3Wh6LTl97GFJ8F5xW+OWmfyCitTb/uR791t46e7vvjD0ow0wooxehmtaKi7IQshXPyO6lOJp8iupeYSEWinuh7nWHf2jPXcU12Ko7xL06v8ZCJw+PFIxRlQcoy0uA0eJFy9rEbE6pBjsEBuKwTTDAndynauBU3lNILGL8PeULVCu2xK2I7R6GjyXEAaPiHxPb7yMaA6pg7VbuA3SeIWUTiuVr/8zMDv69LDc7SeXwqwlIpPuityqpksQ1XHlgiNSlsQNnMZSNHkD5uvXtucnBqWqKvp0t8sD6MuID66S5ephLqA9KlkI+TNa3b4w4sZqHCEXWgboCA/OdQ8cwtslzxXOCYmbVpDKbrfccMqD71qnsg/l4QTlBPZJf21XNO04WjwoWBVAG24hEyjTxYS3zNlW6ZKX0b4brCEwKK9m4LAx47MHIRQkb08QmNA6KhbBFWsy2t+LvrkZjMCj1UMa8LY6YjPF7+pGJwj8YcZD+dMXbMhj8gCON5vckL/9EfQVce5E8sEvv3NXmqLtM/9dqe7Vg5l4H1pTTXVe37gSd2JJ4M73Kz4YQr5IQ2P0d2lYUSE7ff93+29imTwiQDjpIT4Uwi4HxU7tSFSOM70n1mFyhV8jI35kfBoUpt9n4SLkxUuusiNSWxg6+9VTZBZBj+PcMQ/WGMWC1ejd0wlhFxPIPLsQX+Kf5yGdzBsLTyGvCrv43vUJaDF2daCHMWoA3ciUUU4KdiqVaQx1TCq2E9kB85inEISEFoZKLK+kr4ETUTNnLWiABrKvdn79JLZ4DQPyOLDtwBQ0t65oJCDyANLtyhkp31OfGD9sO5ET38+5Jfcl+a/MxpnCnwseTbMReXl6Qf9UQ867UCaFBhC0swfn+bGk4ieergbA/6DjeJOrH2IxTOBxU3HfI51CWI+YFTdWmT7qmUbKE8S9BVte238XU0ih9HDdTURHDh8v4nqfQGGXsR+RuCTLGefeiLo0VFbDutI0zRoL5gQmuSj37UzR/61QdKPJIVSjVFnrfoaGAzjn0JRREfTXQrxYDBwtToPptY7Ra/R5NKfstv27VPjjRBUxzWKHOXi7uHOgz9FKQx//TSpZc/7VtWsDQomjjn7GWeBQ8tEm9ZLXxM6+JsKARF4P/gLkef/m5PVablD4vZOL+C+PmDiWq74Ie8XXm6iYXY9Ck+7yRCub78avMdgPG9rvg6d5S4ahoMMb97KK3p59hx9y/iHfUhymmlm5JJpiTY/ifXxAIXw9vxMwh/ZpHL00hX2hmJkwktfJlT9Fz6nJt1lVbya+7GMzXVgKuSFwthr+4BxYC7cHhaWMKbuUBF3u57gUMcu8tWzn9bQ8RUyxiwR2cQcMMbxFLhKyavnbgfvycaE49Sf+urL23sSovkgDUMnnbTW09laD4acVHzeesc5jjV5oFkz6iMXq8wDRa581LStguK+yAfgkiA1s+e0HXWeb8TrYvmpDPq5B69n6uc79sYHHJ5VaIiPEvNlqqhKL6RfAr0EofVpAEwY+GLVcwwosY3iUH8+XTVxJFsm13mUDjYS3NMSLwLihjY7dKO+2NtmwyeVK+DOsadobKwdrD2jSDlnXOX4hGfO2IB/sX0i91P4GD9VI4o1Rr1H4WyPL9QZTcUzqMj5GrUcGgdbj8lx7JCbD+skXaFR4JGOrYDQ6CTIwB+bAe9F3v8RUEHHS/4tTIukmLN1tvnvrfymF0d+j+bGQGKESCw4qH9KLdOe4u0n0jENgTSL29+KFizB3WtGYQAPpkktLbD1YbdL8nKQ1amvK9LlkiotHvL/VRL9h0NxNHOOPXDYc8yGMoXiKfyZYzOZhccSxZ7VAomQzN4zMHosdxXzFNgeG73FrG3OZo55mcYx7ssYS2K6VkT+Eq59Dt4mvnLQ2Iaj1skYo+EHhuwJYl6C8sJqlBjdnVCoJkUXzvnbWCwhgbdtINnj7zjAowTEyJLMj8sFw+12j1kFRrev6xLPCm2TbKZowVtFwQnxlshpVhdpLCMDhIuYSPJO/OfnM2KQ5GaP4o0HMynd8R3Zyuk1M9hCwtDbUzzsB0IiKAzCHBnjG6d8ktrYuNBbMNmONuK04qw1CR2sB5SsYcJjJo5rwhVGjUTjfwWWVe5rvVCEepVUwTeZilFsj8BPmfopG6JaxPog3aDaqyW/DrLOJtawyONF9fws7qcEI1GFdoYmEx8yvbydEUU/Crm3Q3LDqW5n5gpccQ7M0RqKFAINFov8CoC0jANp+tLt5771awhZxOE2kZOnQy0yM4y90EnlG9EF9YAxRX48GsRpruyCAYNETLfPgEJE2V8HUpFFD0NHZKzVV1wArCs8WqPXHE0L5geaSE3wGdl/qm8RXZcqnhiO4wWVWM7BgY6Pr87NWIhExn2oqLIKDFFLg1UWzMYxLs+SkQulTBNXmbtWHJZBWh0LdZKMl2KDDBV8ZgJBgc3OG4tomipS+9stIKS1wQDZSAeI6NC/LPlBbxgSjbJ5Mr5YCyx4Rpt3b0iel8XsiqYNRY2WPngEEtQfL4RV82YaNd2Q3awDvfpAOwKi3memX+VXkkelb80wGO1DYDLVlLxxekAXUY4tk4NukTtG+f+JOBIoV837A1dDYD22CgnZwonXsLLrLsftDNNMf+Q9Rvv4izcNNMma9LwpywLx9y3/ZG4MDtZnQiGFWmiMrZ3UUKjsJvxG6yznj2x4eP39lLhj7R5AJdH5gM0Eq6Kumbd2hOtD4SohaOGJf8z5wQtqZLDvwCiC1yORYJ58T8OndpFYLFkxElMSZ8DulguTWIZ4gNIiAmXtlhuPPlt9JuWMi8vPSkAl+XA/nqIqqfCygV8xbS6ofda9CQVBZN6ukI+kAl1+NaAGJ7yB/YkOCcZYEm50LDKdWkj9Nxs27Stc2luE61l6RuGBmtr1loWC7ipZH3IFd0JQn4D2SZwlLGjUfQnM8N5JPlVH/Bp1s1aG5Qk3RICR9jebwB/tUtge+WPexkivj2KiWMockiROBhsaeIIrmxfo4gwYhYCZ8MRUGsgo7l8DGIjBIcJ+6V8AOgCyz+f/Qm5k0CrX180Wtqg614pg5OhgPYZS6fFkv3cJ1YL7vlyrqJXRcPPL7q3El0xQAzoc+R86UxoxIAnNVBgdanhW1up5dIu7qDa2OSX1XQmOANRVyLvfcW9IKIPWqy9tghGCl/QmZQbp2RpKAH/enqA+Me3xPrzN0I2CQOKKWDCcfhrehyL0iP3yXq8pusmDAHZ6m7qDId0+Oxc2GQYGiFfLsj6INR2QICqE0lyiJtKY4WAHX+EEEugj/icXFuwSaDDMQEttRSATP4aR8EFqwV0qAERjXTKNY0zpsvr7qilAqRAf1ZlYx+tL8w1DdYJtXaPGLPb0niCCcwn4xh82Cb/sfv3GkojArzDapZITSjZ42EBuyUY6tW3Iy12Zunf+TaOJzaxCMOr5EtO5ltuGq/5JeeBbQT0BYf3DiOb/lVjuHCTvcqUXV9TDzr/B+R+6iMbr0jK5N8gmTSFTby3ft3knwIKlkY2p18AnX6d8nMEbsDHzzOqbd47QA90S1LDOTb8uumEQk8Zf0kk9QqfZ6FoFU9/eViPrRT4FQbsWMBiSqoxZng2moXvsXE2XJwiobJ+67oOSSjyKPM67llGKZsvO+9oDXm+yy78YThEscsqX4RrPZPooCYPX4hDjviwupUoMJV2CJqUVV+rJ5wi3DreCfGEQdgqGbUqIJNowCVuL+RJDSsvrC+5xCq34KQtpt4B0bUGXdwzw//bzJ1ws/YKShoSPAVELl6ajsschWk5zFPhJi+gQWU8+TOkR51WhgyK57wJx+zUHhteTYhmT6zuphSbAJpuyKxlmE5w8io4iRzZRirXMOv0pGa3AxLTFkVXIzdTYl+pOHgYaFTJw/hqrMwkap3KuEhVWHyTHHGZD14EV1VLQqJOSWog+sWaG2qawfNU03ZubHL3gHhWC5dB4p55xj3O9VvaSboE3YTBdh0oeITCB8QULYG6hjSBEr8Kr0UERQEy6ar+nr/eq09Wm6iZ9sJn5YDAbo304X6d4Y99rUls5cPd8icfjK7R3WYShoa9BoAHDxQuq3WVpvKOAxfA9lwKI2X4KZilTrVU6ZMrjr4DlKfH/MubO5Nzl5wZK6fpWmWK/OtuV3tLwXqjjzF70VkEwxeZZZu5UE+2MBsAcp4WduxjEqt+PLLfJfTvga2rTLH2xRh7qePMDyCZiEDD7s2UKd/Exdqal5o0gKOFhn06/Q4XOz0BfQR/n4wN+lymuHGbDempoKgr1G6mKczXmS9fixEnZ6h9LdHGtd/DpIlsTwYmK+PLYXkBjsozHqz67IhcO9XqZfJoBDOXwR+K5abDni3EEQDCQQYRIlyvGtHWU02PD0UpAympssrTL0+7GjvdMa2RSCLfgPP+4+tpgMq/7S1vYHNpROISlHCmVaXKF9zn4AYFiOWzmrSOKKI24lJ5XjAMQnIMj4mo9XvLQ3rbQmTjVqMNDBT63CjKJBXHF1FXNZN6lonLw0+/Jpjxuh+y5fIysJ/Xjg8zmVwmMz2whbusbM9q5dtuV/VagPICdjVDGy9nB2fvkhHU+WYRRcXsKqp6v767etMbGmSX5yzWjZZYrt12fwFplhWfCeZNJq5xHgmXKrK5m1O5K1vLneiT2byeuZGFmkttYc7PCoNZCj2maLtTteAjtWzvz/7UEl7vk0wH647UtstSScjBaAHISqik0T3zvvYWmticK4qNok3M4dIPAW697EfqW2FUDEuiD7JozbWoqz801HUwtVUHfbESIPy8J9QebmPRH9BUZ0MF4/Y57JhnNTuv1dQn734MGYGYBQHIzOpYAjSSR0mVxqwAW0h+Wp/49yc5qFwTkvY268g9k17CShu4Ppr6AJR7XxMPy4pz7++SwaAkYrzcXrv4KPL530Lt3DAiekVAVaVuBBTi0mgAFkFRIKBYrSmJCSvY/TLw0HnjHN4A3RBNMkM8pFpbLgTOXZhs0RA+rS04SooDJk0Z2gtB0oddT/hBwVL+01VRSJ6COVWslMEPCm593e8XN/LRbXCF7X2asoaj8D8fogXhxpo8gsEvoexqa66REVTA74p8CrjgCB3UCgDg5aFW6Zm+fA65Sq8TW+x86hGzcUdbcMHj7JsFGjWQ9MBlEedDoEigH2eszrADV5OgCDvblPOMY5iSnNiFIePnnNDvDgRC/ANwCriA7Wq0w/690IYxI684rN07SYPUyF4tCLp1wTr3eJv6xQ8cJ0DnIWy8rlokvcVfEPqUNK+qpSXomTYwav5bzHadAulSsvYScVtsQNGpRoXm7tXv3gU4PsqifKr0mtHlGfK6B1NbNbv4MdKZ8hlZCxWbOCUZMRRmVmAlm0WwqUgr9nDYw2jxhEx8nIv8LJfN62p7/nnW/8LN2vvE981EdyxLCD8v/VZH9jHKAhgd8xKqsoDf7+fU+wNEao9DKYldOkvumTQI8f29Cf4PaT8E8yyAQBsSNvOldLd32QybjzjhrIfiOYiRcTo9GSaGM48r8y9/dBpCmUkzibl8+fOvPbUZkPUsSuNP5ruvzVeCvUvBW9nSBQJbqjFYue26SzMSoT6FaKswUlSibiDzLgemwp2Se3PtFrBP6EqcLQOftKBktl4LxtIXOKNQNqddbGT0sLsFkzmNQafmiG0R744Dgmpm0TOvRpMsmYxIhuCwiTBeIBmiUo06STl3yliz7FPZsS6+y4OLD5XjEy0h4KqVZSv+htL42Bvys01glCH95fdMPML0l4dqOGRijzZ3nlPOtqx6KudsUlV2wJTfr1WP/fdK5dBtKHTrFPvO3z5H0aCmmXGUpdmZnVeIPJ7bckzlXXC1MkI/pMlNl0Cr77WkV7BLE6/7L3jJ8+nNDNYADROdiyXBTqp2xjp4KQsfxYQFT5ACe6ynxiJ6vPTygk+DMVqP5K8zp2glEitatoUHK4dcH/6IjDWcMoDx7+jhfnmYHg+JeVbrtRR5KjP1e5Mb6HdKzqXS/fSX8T7xKGrydyzj3yeI0GD/pl3h2vLQhtIpFxQVR5VDp+nQJud/6/zXb1fZMa41OEXdaEvW7uoJA5oBm/tNGqJrP1xMTL3kDWuL/A61/d8KopoQXI86zIS8wZbCkd7MDAlg40KRkMjHAm0gql1KkekwoT3Jn1NEtBhxHLNM6XKyUWx4AeDhZvPoSu89+6FsBuvS9qz18VHhb3kTaE7cOS7Odw1MbnFsZQMSNVXHk+s51/TAVXJCkChWya66Xt+1CCJ/bGwYngiP2wMu4j5D1AqFLhZ56Kp4aU62CnVYepvARzG2IGxHGVaQwpX/atXEXt5cpGCpwa/kSp5YlnvZqtKzW1JGKKZOJGw2kIY1OFCizlwLxePETbRYwCvqAdKxelwZOjg3DLHqEJXraqP+xNUc1buTtq+M9jzADs8RXJyXFfzMcvbKCskODZ8M1cP77gRD/n/p2aJtCvYKBCz1Z3H6rSZGwNqH1AzaWB0NQ+pSgwrfQ9rtf3hGUvRzV4sxQG196FkamQb1N9fSv3LU4bCWc8PtOqyR5TRhGuUCWQFZUtKszEpmigCN+EnJyyed1nY7yc03zK52KWunY9KowDsmJrmYf6gqS34iTbpBJ0a0aGyMRnNA6DcOCcAePydQjer3H7b9YfDd1LSbuzU7TdiKyRaPPKyRrH/HzfhMaJgcq0/gY5zCrPUpY/+Kg6BYb2p764d1Dv97qIMZkNNpqmZLPMB2v1tIXeOOvTTH5NYp4jIsnqENu05S2duMEl8ftByl6rA8iKMpcXknOfI0Tj/fxqPDa6Uo2+lxBdHM0NOD6SznJL4BO+wHwaX4TPmuT90/zUwPIFHNROawwsrdpA+4cK5K9bIqbXx6rPR94jvPYqvjEqSUNUNMqQpOUKEGobEXSsrdjpAI2f9etk3g9EGbwPlmdMZBxQJoPZjldtGBvPM5Rkx/L4OjTehqs0aC6vHw77mrvJTZ0P3aiIRvwrXKkIj2X+ExO9P0A/uQTcRof5/HaJAdPKYJl407ZG6kcRlh2SUIhLFf+Wp/g9Ly8/9dBPxJkgd0jr9gufMuJb3ZeCXqo90/Cnovdf5HLwQDZtb3diPnlEaADb/PBP+Arij9Jpf6tw0RtcQ+1uyORDsx4uQgfzP30ENjb09i74q63zsM+lB9x2GLQv3pyrtlOFG1qHmAGT5HLwSUQT2YAHVXuJZ7q8zSJ64B5ZUtmiBD+4UYveuHjs7VXNoQSHSImymxOvzqlUVukx9RXN15DPfgaIuxxR8Gl/8E3/dSvJtHDYLFZIdjl1mgwsln12vzZ0O8TvAqaTG61P3uiQgkzVedjNxGnBm9lA454OQCbfzfcMNHBAQPBk6oJQ5bKuSIBwaQBUml3fWc8PIi0LFdamLyG+wcCLKw6F0Mpuwk9bHvbgwhaBmLU/ITnkz2Lb0KOY58nMRAvx7N8zumBgrreYfAZc30ZUh1kxZo+mhJSMhdvo4vEek/xPGJb5lrUbxL0oFUB4feLA5rtYfXcM5g3Fv5TjXMG+D2Iak69A5yTmAi2/HfmH/o2AsxECBkKItjmGz466JX4s+s37kj6w9PG8SZpIyuB/hRK2Cdh/pp2l6/SrXLBHVcnMgxG9x3G+/sKA9uRs2vpa2IBic4YmZyEI+r/dGjRqypkIZuWhyjQf4waQ7TVm5kTFPl76NfD2Nydm5D0x8Uskd9upm2EcmHYwZ1OpjXBWIxBMrDNWi4CJDHiWCyz8Rru2qCdQkgFuEAb8+1OZazH2XIH/WKUhcOxcBMdyjbkrk3dE+5DrjlBviA7qLjk0FzvgpuNIz1Kx7PEaPBXnYFFa5yZvCndoj4E5lbWFO3OTWHGYE6Vzwrv7SrNQUj5qYxN+CmPsXsmdWHRv3x2YpLuJ5Rj35bcG5GkI9BGiYzA1qP0eGRu124n9ECb+3Bvrrz1Bp8s9Np15pr9BBGpi0Arie79dFFhBa26YWbUp3EeKsyW4OytXtbw/n3aXvOGhmKNV8eK0NJhCF4bmyMxBSqcqleNc6BSsY9OD41lQcdklPtm7aOWZevJ1zP1cftVjCkhvp/1wwVjmXGBQU1t99ajcVSe2NyibEUw7eCmxn5unEGdv2d2825JH0G4PlWuoBMLPCrxJGEuy92+yyn5AG0yk7gjGqG0nGmNp6hGfEJ8U1xq5oi2D+cd/2oB7Sp8+AURy+EMbPOMZQpc5IUCnFeWVw9QxeNDonV3pHcWI0FerZVGCeManOcy+suVpTDiRkvevKI8/yIix0YyZQQwguKtE8GSaRht+kzYe/0egUyy0wgse2uO6DrvuiHOLH096Mf1DXel9J09AzdXB5A1t3kQrc5fyuRvm41L7/+A5lnF8Rvll+7BbxS6+CjwGexgl3ClfAE4QJC81sx2p/bOV9emrvJ4mBW/Gmeqel02OE6KKP7tb3oUFnIyYFUFRfT+q8OcdOE2k7QzUyA1ud9z5oh7nSqVLDP4h6vPbE9gdebgWNEoYT3Wa7DdL9muiWqJcbX9aPjJafwPsGQ5dCbhuz9I57Up0clArn3Q2FKI2R1Zj6cBGEmJlyeKBORuS96brS/pE1+r3XFMr4zmxllmvgq0DXIOH3l3Sj/W9jup7Ie059+wQ3bsgAy67lefxPkqI4uMpYcuoJyuq1Tr9dj2VtPXG5LmX7zhZvhmUPVZ4N7kti6MuajDloXjybLg2oUEMQhCa4amEtBlwb3PhSJHosxqOtUqyqGTu6N30frvO/y2e8uyqNm8WN7F8EZ5Uw6/wJ8bOZTiA+Fm8haJ5jOQ+ij2PJuEaCdZ3MHcTIfMwlfNODrE9BukseY8GR+vMgu/SeBOI6zOIz8GNLROGbBMwZn3ki+h9P/mujuo6lUIC6qHw/1rGLDwrPE1RT3/qne7QDNIRhSAwixFnpJ+wuVRFWpi8HhknQ35Gry/1DJqnOqQ1pg+15PLoNcpyGA4ahzQeBPw/dn5EC7sf0M/LX34o7a2E/PhvFMbvrivUtN1AwUqF/XgJnql6UIHcMQdece7mQCfS2FyArPTPdR8xCPoNcGWyRLKU6WQ2/2a2O+1MmUXZw3f2lnwmhrLIKpdqK8Ne3VcBnYs4Zf+vvCyonQL8M0viMzdRO1VHYr3quXLeTgNs3uwj2/+ZcYkzIVDZot5TMdQMaMEMyvO03fFQcuguk5pzM/m/CfQ+9PbEG9X9LB8gN6pi8IDeghKM642HLhf1pnpXXO5zOQUASQj2UPXrv7j/vsaCNc6WAq3AqR4E34h1XBq2JyMz5FkSIBS8OFyZgvlQm+R+WyxB2uEG/RnicF8G00WIsgThVn+jUb8YWm5P7LtfmVaHH3/ZR2Ay3V2jWRudywdOtyL7w8TKwMGnLGuymXz9oovuv/cWcx3oQMYWzYxAJGDceeGc3MmlA6j/mD+4rg3yCCIOi3zrU/Azx3ZtzYlUCPRbhWu7AbyBSxSf1kFey3DNuzYhVPuLTAOgbWmC6Baj5eOyLuUdRygdnC0o0wcBK3YDb8rx6VPRUR+T6gzgIyHmq0qhdQgfuUWm0ex9h7Tpd+SI8tJEheDsi0O+C54GMKSAuIgq5HZEBo8CI0EiEhI8FpmS7hsoHVz7rvBR+7Ed1PTzO1+GGA3W3WdIHLpkzZXimGjUSYNUMAMEywzE47R0Eei9QdebCF10QmojMNa6ZxF9JeE+yBctMV2mWUA7j9VXF9njpInCagltIBQzsjkUFNfcrbikSFtJX4Ir/7t2kKEvOA6H/cRnvwT65NSD1LRx1KBsXonZlI8xoxueao7ojtMbDUMhh4RwlubSs1YDG6pi09UCP44mWbALPRic1czuGfyV5ao9OG8MkIxG3yvBTfmqRSa+yDiltD/aKqzuImQhutJVKEgA+hQHxxu7xNbVyKZYK7aa4io2pHBIk+jPD5cYeebJtSBqqA5eIVFzxsRueHz9l69fJ7x8BiyUhkzPvXXMhVqlLr5Vo8gHsK4+eQWMc/wgRtKOSpU930cKvSnin0K4J+D1bZNilj/a2lzwNzUuzkknCcgOaAf2QaJBuPEgH4HlfzHlRmqmpQjYM5Xw3rqLtavwAeBS0gkkOF9w8GrdEkopALvqIfwu3RFIpOs4CBzgt1P6yo3qarFNiPnrAdzkRqbVKQUUCGKexa2ePgDnKq82Q46v3e1BLdJci0iCvM/4DnfW0PG1ejguKgnkaSadguplMSFyS4Q/0u5sodzAQBopi2xeUJQy7tV7ync5ZPD3EIHaDmBrPAqrFRzWI7KiedJUEToVU6hDYX3fmbhltgdNUNQarcmQjCeT1nJXOV4Y4SQBidHq7dlHQNGWCpKkoyImF5ph8tK5GrEQbaIdmWEizfvfp2xdsQae8uVJ82u14hao9G7LX5V7g6XijWsCKv7up1BvKPtHu7YocAyyLkudyMoVcAr/dNZRzmz5/D/dDXrVmDaXqcIs+2PiTZO3MpRLJWNqeEC5Cf9WiAIOoWcu0UlHZUEy9K0EfzFtF86iYbJR9At4OH1JtAGdAfUByWyC6qyreaULthLaSxFk8gZ3F5CEtInB19BZmB/GWq1OGGOJp7YPyvuNQhX+DjIuLqNBDh0RxGsDeL49Kus0n9/41Cw/tkxtIdAuMnz7iaJiY9big0thu9rEMxpaD8++vODuvYPriSA0UUayYgTROl5XevWUXvWRbZ1iAMAl9g8BGgApXCYW86YGpV65gKjeBvCsq9t+09kNfGXUCPpI1R8BxgGenrO5o9qDnLpRDSEkhXviymJeEJx/rHkRVPD9V7qDuFdhYvUFwnvo8lxdZ6hkf0RFu9RnRKibQcxTGGU/nv/lLlifMnurWPY2DNPlak/hHlyePGEGU8aN6aZYvNa6ORT55HqaC4wXHXMEZPAOHThGELEAdLvb2PxdFI9kuUGNC7vSdkPwlGjSqW9KR2lSsc85Y1LIbcHfd87HcZWQd7DR+jgJr1c7/VKnFr66cSVEMRgCTkbh0S3Do9kXLibb2ynz9PW3EmflXBsp50XRSa5sXcHVCYO6uUxICT8uCSvXz9Xr1idGAoNEjAOl4Fr/8kyDPvuu7m7PHRlg9a/flkPwDbyZRwtIIoegyssQdvbUF7BOKHwUlRECP6f5cYDf6CJg1MosTKJ95iost0VFukRDAF+MVyGXj3DarbGnTH68KIiCqeLx6kkT/zL1WjAEDfGeTmbWgXRPbf1J5WIl0wa136JcapCN/J7WKOvOHIJRTjRQPC/nmrNYv82W30X0y4yhOM6CtV0W0OweE4ITqV380gn65kzB7uFlvxr4hah0LQp0oJ292wYqpLPk1N2AsVJbB5w51FVV0wD3RPlr0Ke136ILxi4w5O9jr8n//VE7LSiQztlLafC/UeR09SG+v5ztgr4oovkKzF6VlWCZoIphc3XWeSPlwbnlEmaW18bjpNlEVIKPwn5PTm1VmYMHE6A/T1hkGjMLOM+b0E7RWfXwKFDBvMvOKbNDyuBFHxYb9ohsIOm/fh+dK8pVhbL2TxKaJfcpeCRg48QuIPrACzYaYcyoTvG5xxq7CkIJ7zyTz3PVllUFx3UMnOFU5GqPfNyHC4nrttKCTriiZ4saLpZG5aafIT+1UifLgCiKiPv2jWvpdTKgWiUqQHPyy+/pRLlc55SBPjv+9UZk6C+Xoh7ZDYXg32EZjLFDLjBhL44yoUEBNfMkpvieW++ShjJ/truEa6llDJ/KeOrLd8lPKS8FLy7dVjQ3G1lS7aSV2YmIrzEEjhuOJXWmCG3Ft0hOTatWpZcpL1SVCng4Y3GHPPL6oD4w0eNe1cgVQhTWfbRr7aqk56kXz4Gq5VZVNA6CEiduuugW3EFbqwbYwkxm6JQxehlH6SOCsG0HIDy7Vg4+WKlj2VlIjDrY3mEioRpYNLTdrRYyzx9zpQMQwPYLRouqcUMe6lBFcVMaZdWvAFaIoBDnCrQOsbiI3Kv8jcUUIEi0DxCh9dFj/VRm60MPr5ZkzNUEmZyggiWaeXauopfMCSXG42cvquxgYkDlPyzrhJoK17eh0dxcGRjVqf8fO3ESws263CHKU9Eem9T5+hk4T33qJ8OUJ/RtovZunmmqmxcnj2KzOPhZaSLSWF0hNoEP4LZ7zY4up68pk8RmXPnETznZVrqPuqa+FiqYlTH1x9ICBwzFCzl46h0cgO245qkf0CvJchvj8kZsWkdJZ9lGtbGfeugSJXTwJucAKeq4465phXlKf7OSUMUB8LxDTyKAiwYj8LJBU527X+pDCAukuYOzELPmhUD5Et0jPgW0tJA/9HCAxT5titLI5tTX5aFlcCeuGGminhT4keQhhnh5OdBRKfNFkJ/MduJRRus54RZQHGPreIRDxOLyJIvUB5D1TXLFgNTkMtU+GbDGXwHqFm79LVhf5JM4QxYWSsUa3TPNp1yYAk2crfklxw/Un4Y/ghNam3/RMUT/MMzsXjUMBQ0kSWCN2bZmyIsaUY+GwwuBGJZF8phj/mCsRKNl+d6LVf9itjGtt5eaCjNBwscQ4jN0SgWaYI3DSe1MX0aXMZEn5BjQpxwJLpsCEm09uwEaXnhjZkTyVGdli1n2RwNpY2en5BGmy2PgNidiGTDeAqFFQbu7NAxg3hBfOTWvGJGMyLBVcl4dn/Dkl3VBGS88ewCnjrwFSYu9nAwNlHVv3g0M9aAdaKK9L0yEv68cLM0Hq5AeU+8TzW/VaDoZFPGCOa1VFcSL0tPpj7s9hUI+rqKCJQ7tnb0ednxeruRV5WuzGywNOfC/BYd/gL+9G/hxVublCLxAH7TBoYsKPrssZD/hZsiC1/2UeZ5A7tqM4QLCR2QLICWIN82UogDs0Bc29En677uTkBuHnETt3QRuS55jDejYgLNtdRn5+GeC4qLUQYWaa4gMcP6+QK5xN93dO5f7MUbz6F9okZ8USa3Ud72YDL8yANPld9VTTUPRr/i4Nvj+GFspR5zBoHLaPXR0jKUZqEBHI75axBHZPMW/YUrS9YORQmgNrrT1L5N6PJEEN6yAgttfCmfXTCoy2WGLkNae/wI9COR6ccxHE3D3f9cXM/TmIODu1DVk6UNCXpipUV8LJrkHSxnQYYkrZujkCMdakfL+46pFdMmGwnjza2knD7u/A0SbxS+yNaw3n9NhLBsjZXA65mbBlXnfgGHiiFGxvvL2CXvpfqX/HhIaYucBQTyATx/lmQg4GYw4+Z7bzwJ0yee73XprTsP1JgOBUdofVjXxhx+qO5mbBTvQOvMpA8d9t9xa/Z/js4bHt5GzN677ltKaoBrgfSw8Vz3GlVAkH7UnaBJwmDXTR6yBbDslbaRWuKGZ50AVWz/OT/DWNVdqOQNZMvGnFO2rD9Qcs5uI1XrR+JrfvhMYG4c7WWXQSDejav24CCSZRgx35CdDI6TcgJPEzzkyweqQbINzdPDKfn9DnHqYueTKYNUuItTTRmHnPZID6XkfGSThYrGdYq6U+qb3Qa/rDm6H6SY7gqyTgPPtD/6tKpmZDTdk/gKOkkcwzpV/2/AlqUT1ZSkoLDHuczUkK8dNgch9e5GdyR/GZLZkj6haFuWaxWHci3xNGIiZRjaqT0O276wTno5I1IFtFA5FNWS2LON3AvLjmkuUTzptWqZpawBKJ1u8NJD4qeMAipdXNi3miD7vcW8ZD5d7YWGCpjGPIhRwrQhD+ATeihuBWYazgHeQ6zo4fHcT3IAli0JTnvl7kShh1BI1TksRaXV4Emzl/cxzIdgi38UEqYGFeK1l/zKN2VS07yaBmFjkCIpfa38FXajjbd2p6s+ECcMz+U/iHqObzhKl8OmvbrJO6BLVYpsgcWpk4d3/okpQgLbms1ERL3G31jXv7vEfxWW0w4S0N2OJzli7TtSKQVny7UV2HMqk0gL4+kGMGb4N3Ycsen4jsM+bdlCXyDvsxiUHjS4a/1AbjoEhOfnG0Q8jr9AtUrTNDb0yeNJzjMN2XhCnq2JavWJlEWpI8RmfizIhevSpXLivP+0EwezLqopdJegT8cpvVRJxnXvxLi9s319+5segn1ZqHTDQEdV1b4xA4s8p9Sz7BodpWW02D1RZCmQJ87Qv5G83aouz6Lx5iy/s3K9Tk8zac5GpptUuCA8dZ3g7Ud4wuC9lYE6EWhKkZ2nn0OBRqCOTTaFY4pYDOSHVZko/63E0u9Jr1AYpj4lr1d2yOH7E0Fe4ephVg83yXLaiuReEAOsWSNSIlZ+LPsTKU75sU7a5W+KLGDa5B+PWdhN0q8n/My2SLf0HLaSha5KWaG0AsXP+1vyuuEIfX8VuFcKYhkZMS5TCPYYbWZnlByPttqJRAugV0Q9Iu6MufWC3ab+jF9W64YFMcIOx7mMVOexWo+/6upDPJM+dgtZ6b+zT/rqZ+DnxSM2RS2AUUoMYFqij4OUXuBzE+Smd1ikJDCOep9G/xMDNmIwKyLb4Eaz7zb3QAoSXGC4+ABYLwsx7te/jIKDJI7exd8t3Gg1VmOPlGnu6COJxw7F2+CKUP0TlzGOtfc0Vm+nKUZwmdOGSVyEmonkJBJcYSHoQHDUKCgq16a07pKcoqlvk3cINR9rXJ1GOu/8ycSQ/fLeaAv8lUPwfuzDDGBZHgZkvE6acqjAPqVkLsDm9YvIwIODAJu/CsD9sTTcB12C3/ul2YEiEw01qXWtaT1ZUEBpgFUKjRxAFagdi0N8oBp3oeDnR3rv0FyF16hD6M2Zaex/6lIn3dGWvBhRDoyODuqdmjS52hvPLGXGZyOmrphYhbBAR9tUCMH7srdz38UzCAoFgC76LmRl4ojxXm8ST/6cbSZb7gBqkCumv2nEhMW3bAScVXqhGDO8XeAlrDejaYcXR37zmAPUat5W1UIqlbLPhXDQxiqrnu4IHSI9FrssPdGrBnUaGm1nmXrEoBkux43xiPHvmYIzNYzJi5jGEgc+gu1Vr9nQjNStS36e2E28g52Jw6dEjlLw5WxUAjrdwr63HvMLGlvqxjaJ+1N2pPR4EXozOiw8y2PH6UoSWSlHcVTDqMI6eKcPKr5P3JoPUj9TTtWjdUKJ7IbP0TyapcSUGG7oAx9JLBhG7zksZTVxrATD58v30V+dtn91WxNKLk6x/4QSQcsl0LQ4NmgurWg2SVGI+OZ1tXLnKtWUK+jdxYJkGWQNlGWU0HemBOgyVdhHqrGfyJB+RDdknMiEN4TWg3ILazRhKLgBC8Rgm2s/8zKeDv759IGNJgsHwAdwjGfloPBjxCNLEsU2PWQruEjp2sgej4RZMISP1UcUiQaSJbxPj/wmNjFDPDcj2HolIhTMYBq6kMR19IRa036sz5O1x87kpKVhJx/fE8K/UeihXa6IqNEDYnco12BH+mTDdk6ILw6AikGo/6aP+A0nXj3SYkQPvDHmGbSn1cth/xDfGRoOJAVTIc6kK5VDxrQ843/6efkgbYrg3QrxOpAqrZDGh6Glf6c5qsT4hig01+fhUhnj/KBaTrbJrkOUe9Td3BcYVfDrPrIYK4KdFA6KKEgereLI8iJLBzobyNwzsrYKfcjerUE0N4otypFtpIp2+ZW1i7v02t9rHWwRUSQ1yvcMijdgS69KDZZgoM9Hf/Bgo97wJMSv7eItA7hbugRojBP53mkLnnWH3bb9wX+XIHPZV6PMZtPg8QGLFafMoy6r0gQ7yKiWMfGM8MixdIZnYJymczIwO5oLCva5INSJutnddTzjSa8T+UBcmCafbbAoRNIDyD3BRP3PW2YhyVnxWaFsnJgfXltt/t9xiqA9rT3aZ3aJkXCrIE5OhTEhGLliQqaabJS8ty3ZBdlgEISxfj3rNvx6I36jKpoc6KqWcd3AZmPAbyxkiB2pcN3DplP+Xez+Sc8ZtVtTrUEnbI/GdqQ4JRneYAt6UtL/RwEAM61Ebu/6AnYGYbRWEyP2jrHZgdPbhfYhhoD9cwFk/0R1QMc1KQmdGAN2S38bX6g1quhxu+W1KUuLi2ttTKt9lVPvxoo9nvRSOroGKlejWCsrdH5p5So173koa5nEGnf13hCoCHxpW8bHN0ghvUCOnktcPqE70uD94s7c5rGDFdrg9ZOfb8ssQEVIs0SWw40XTA/9t3sfWexibLl6BjyGfJtTgyUeV+3StK6PED5UIUDfQqRwPIsqEthbeYYsTr5URfl3MOiCdgu73zIout0fd3gYloZc9sxDWTN7fBdirh1LGXc/hV6ZL5Ld5A0ED93j6TTarI34/xIvBv937Ayk6eYSavj7Eid43mGIdICHeFrZanO4JO4wlG/20Y5ednuUMzDCovxqGnw19yK+sy4Qw0+5f11zFQW6E9suELGKGMmfXCUz8XMJBS4Svn6Ar5axvBVoV1OTdD4tobV+cD6Sh/qDLiJO+lD/L5hcYm2bkYFgjF38VA5h6uFfyoSCwBvSp9hyPPOxbKKtgZNtO072noqoEJxoRovm/TmFvDQthYnQ6XCA1RFYiEHFo/JEZPNRs2xORM8OsIMkG29fxeBtFrJW2v49fw2Ff5xi25rXaw3ajUYwkcfyBMxcyCXU4CDe5WSzAfm306/nDBvOir9uLje0huZ9hyHy7iqYQIbi9bhWrFvisspIpwCO0y+OWew5lXNuBnUId1n88Kq5IVpn1BU4G81hFCGFy1I6SUbKKezSDZUEU48CQ4r+7aZGQJ2mL1UjRpZ1o62e6oG3eF4RNm6yAtp5xVM3Wr7LWpvnu8YhkQdrut2HBukqmNU+D/lkJM5B/tUZ1AFwMkPb8QDA0XEw05kMUjF2ODcBB2A9040iVgPT8I5SWowuGBT5hbf+jZdTpzXojSgXlTvqNzOl86/w3dIOQ0In/oG1z26bBLM1MV9XZJ6XBWVqRgvrJNqjIvNPEINDjMfHmqapJ4wtH3ANJ0gDYZddOF0iCLtqXXL7Ap9wO8e91CpRytuW1tZv1f4/VHfJ9Y5tFmk4ftDo10PB6hw0vAfl4IV9u4r7SZ7SaoE+rlOQeNo7M+aX30yNh/DnuguzfoEp7ByYncnUwIq01zjMeIL2tgAS7P/R1rolQBdIYTruxf3YufXM0bJcZe5xY7a8aGE+MAyG8Q6eAqrb4ZAj0EOEHhzZOpDBQtTQIZPvsDX3i7yGGCMSWRKpadqWaedFELKLosq6DvuSk1oHwGKPju6QpUIhSj9zB5eH8jwxfdJ5bznpEc90+omoDEiWe7cBB11VMaURHdqnZCBPoXL6D3YlULHXHq0JZe9nN9DetG+lkD6Bk9NWYK4F01QVlQ0tgKzWw6kWXSxhBQMNTSgKhxVMO8SKRE/Gxp2ORVUKD4YEzmCHCbWdemNPZ+wdfEmfkUsSuGrZlRhmK5NLT1OgcMZxgXiVY0u4eC2Zp70ISFhKxZMOmqYRxmqekR9hg8DKqA2ZKN+0G9mT+FAf4lQheNwJfAruZK692Gd0InR6kUeLHs64KWtNQoX2CXWo/pdbE2MfA4hkwf94enKS/ugqay6O6NtRkAYR08WwMO2aFKIuOcdVlbfHCgYE7wDU8tAhHIkQoZHN9P9ZVFcpGa5KJlNDkk4SIWVC8v3bSgjLBm1MfIiDAqaGpINCEp1F263WdTIVnBP91E1NuePzDs8K2jJl41GnwjGev8mp34iXZLZcD5dsR2ex5pzVq3QU8byAw5WD/JTBCwBngXANdWE68jUIZQxGQW5sLeq9sL4cOFhdY15wKvnfv3oQ7sH+SeU2pOWnw1M6trYnSUoXllo8pSTpIyFyjZevIHUNSCzBYuVYmRs0HibDUCCnVuzd1H0MVyt754tBVrLu1rrmqLGgPJ4US2qzV7RX/5wM2Ky8aT77ouxKlRigddt80RGdUYJDCFhCV8HPM0KAGcw8lkmdHIvefdwu9CVxbxz1oza8PInksdjLwYQ3jDSD3IFSEHZGDZ7rTKXLQRbGmPDZdXNNCgX/KlIn0WH4nQ2N1SpqYSacNtkCzmlD7+S0Xu3XXZZ4h1VW422VvaRnJm6LdMVxCEavNsHzK2+hcuN/+qvw0mn8qgmtD8vmmQmUkujNKS6zO8RSBvi2A6QR9ju/uJMhlxRyDgX94bqIa/uwhbbvSZbIJFgNVViA9O1CXesXoHxjhyLtk6PuHcXX8N5Q18Oi/uP+J30NjkX6IMpyMYYtr7GADfciB0TBKsdiqrR2+9p4bBL2aoue/VGzfDLOLmZ53gBwl2uiBXKoxbl+3chd9jjgn42FxEWaqq3YisWUFR1AyKX9Y2YRuidJhyr26KPiKRH11Gu4rmvy7YifKfklZIFlvBaetdyT+INKPrly6Q08isVtcS8KDpO9aQv5tmwZR4hx2f4YHJwVEKP/ofDwOmUWiLNn825zl4RjDM7W2nj9rmShceTL4xZVySihGy9uG6ih6j6eg6vMAorO2vS2v8Q08Ji0jnz0xdRgW9S99a+g68vCNDgSzh/6Cly8urhPCd43UIKgZITdoO90OuW5rvvOY+CR8uwpB6CdvoSvuKC+40pGbGDblE9c947StkIfaQ922KdCSYh22EQ1uc7gxgT/80uQ35oaqiyfBWQW3N4ebJgM1MO/rjs+eZqCdlySBt6/Cg3aq3bZVAsiteJYGp+Ne87di+CV8/cfxy74kKOWIIUPGpk3trl67Ae147EWtkWJU0E86t2RwNw1N4vBehucv8KOL2K8307EAlxF32ZoQ/T1owfkrw/OellH/+z/gbYOPT9Ursq0QNZ/aqyz7qqdvdvELvvfe8fbB/mHXDSJqQUDHuugmxQhAYeW/6iRyKWmssS7kcqFkapHUIvOda5HEgYL+iXz4hB5y51CpqGVFI/4Dp8tCSoCRvUG0Gio9ki+joGXrITX8kueBSnXn57JRsd9AmnG4JWUf2GoLm8u6T6LOoQfXM+7fzpnOIni3grtWqy79GgMYlziqHjWptW65K0z804c6ksL44brxncOjJZdvIabiT2iiXCTQAxWx2X86mjTtl6c/4NnBWuuGv/mp7C94HO/dE9DhTeYej7/m4tyMNImHRodqWtLm1pK/EA7PMPBW0EVnlaQu76AaBWIthkiOcm6SjyeKlafayezfhub1Gp9tokL3DNMPoR21p5CaYsrannWgjY/csfVYZAd6OPvkTXnWDllqrtcIgLzESenxOeqJHW3pRf5CxDe12tQc5/22vz9p0I44ubkwUIEFqCGmwcKAKowW585uYLRQAGKKIcBYawKYpQRAAxaJ+hYrVT7e4P8PFqLInYrb/xyqrxvHx7zoK0n7/Mjd8Ta+1M3nxy/nP92ewqNeyj9tecDQh+w5x3G5QKYJplgb/W9+v9IE0D31vUovhpTQm5vFfluGvoPzO+wx0IF2ml9IaoZKbug4G08fyzOnevwyUpzjtfaysspw57XKBkojMq5QvZ6wD7dOnZcfP3GghnFnWGpwuZOzEDu6IrpRThc0wylr/OWCAOTzPA4klw+3sXnwCGBvkumwpWX4Vg8RRafAxQUCENTuNtoyJauI9oFh5kIDNeNK6Ade3d95ubb09zXSl3hXZ8WFrpVJCHhdvyf2Qc9OJrgfVmWWwAjZZ+hP7azeklm+7rX5riZitUiz51AxFZjLyOvu2HLauUO6kX8EHfBwzX/WBnl2y/IHxx8qOHrGlMXPDeWOKMGauYT9B5paRNRzlvOA0v4Li6jUV+7WByqpyMxYJTuMcezhTVG+08WK/FNqutYpi/xPR3sPENE8J+VGGGXyf4+1DGryfOjyLDPWGI6um45XFZkRQjvPxq/nwCwzZg9ib9EwPo9exue0KHIjfngr2D1Ep5bTpcQaakjonh4gGE50QFG/9RyvTx4ou2LliB6Z1ChtgyCwCPrLnfSHyKBDQ4PjgYZhThXAI9aSp6n3f8TMTmz4BTFfV9TFQ17G/+S0A6Oxwql2OOWQmvow33fzbE7S+hIIHhZUKTNUKAK4IUq5YoVZTgSq4BtfYutG+wd7/5tDRsloBMCYhckTsN/r4OcnVhfFPazSX2Fjoa9IwD29dPR+NtCWEMNYhuADt6zfOROOAXqAHAdG76cLFySZY3JnHBuytBPWadeztaiW2bOcDlkJFVXzK/jtbeZ1g9ZXgD6cEbMmdkpexifwXpqIsT9VPUGrMJZowJHWxvIkPMwf9LqB2V0ds2fUxWohbpFoPXpFT79jSpXtw2ZMVrYUtKTTTs/g7sYECFwWkTvhfJJRdDnMCnmZ+xQdePbq9YOfmbjD1nqoMIbNCOz5GmdfNQ3Tz7LFMoj9TQb9S0IuY5//V2LbCcnIrGgpJaiDMbKwpG9c4rrCkWRnmSZ+W8f+In/Linu+Hh44kbmYWy7EnbMqYnNWbZt2UwFbSswbkFJTA8GgRkruDcPVSjAftCPupKD7dQJk3CFU9dOiu9HmcBoDluNDEhgtxqY2AkzxMfvZP+T9HbI9zYv8GOf32r2pgXjcAJtlyd4nPehgxSFiJZsxYqBfsQWkth0z7Ysu1OcMTbUlpRbN8fjg3a/yATyBtFoG42l3cIebHXOzlOEPVmEKNKzucBtb6XKszLJzPPEUEoV5/D1+50Nd3oD2rxph5TttMDfhMABkhCuXDqdvF9kSQxstyqXC9l1HPGr8u7Dj1QcWjHEOXZA6egbemstmFYUVNMpPpVKJagDlXsRX/wVf9vYE/TMUsv8lXA/n8wnaTK/KJfniXiscuDZLIaiH8VDohb72sDqvG8Wh5g0hZWx754tbmZGCpkF0B2k4kZ55HO63ed/0xx4l6efxb+HqzC2rcUZestReZEVGGEroqr3s0c1uekH7la/Ch0AO6GM7/+THtYy9fDxx+Nn7T+9FzmW286A7tns52UZ5UxlJkfNtUsr/FTNRJYUthPap2W+HKYGoN/kUuLlczq0QnU+NaYmfxKmindYf7bFlE/Sr0ItXjpHIqshv8u0tt2Z9l9so4ZMiobszawphBof3iSRiUWZzOgKktCP5xJuUV7IVCcA52IjGbLk4bXeuJuYIY7LOqSdx0TyFuodXpoAGPe154P7dzJmrvzgLahOZ7qlkDiuy3mgTg+pd/6RriVgrzjo0Nf5FfANWgOb7hTbnqwbPrRFzUcjg0igz3/t9WtMnGvtYf0Nc1KhmbIXLeMfyflNLcrCTGzVX7rXw1+kKWSsKQSnpnFeqMABwXe5zeIzAVxQxhq9eezKUOGoriSh986CFj4X1lZWR0IO+Na74nRhKrxwVPe2vi2BI4vie+FWRNpHgwCke3eFYCqTyoIGNdDXLSWBo4pf+35kKVowrqIc1qrmhWNZ40ePCK20FzRZRJHot6I6iAhJ1HXaUiPZbjbAoyuKB+kuqeVxvbEQSBdCuCZJUaKYPm4NaIwf6vJFP3U7KPeulNEamTsjM54zOmGzg5m/B7fnBE/+OcPB71f6Z8Je7NziYtIAt83jDHF7T2kGZWh2xHQWfT7x5eamXb/EBnYe1EEpyPFPVmw39MKAzX6hvlOSvDQ1CN5VJu1sX4A8T6QXkDXmJOaw8A2FMBgfX0nW8ZAfPvmbbNpiLO/EVBJDjZCxiqcQ+GrlwSh79a+P+/TqnPhm99i7X7v6ExU0UAh8fjwaApKKQRQcbIgjoxVUxBzD3o5gWCRB8SOzl6nxsSZf9G2znhCAxT7eF1I9miSP/FpOgtw4iQXFKFXpcJbvc8Cf4/pdJTYNAHo3jGQPLVvg6SrCy+pfx7yh6HnbR3c3GDw2tCYrQbO4bs4NcJ2lhzmd4OYvdqTVBUO/QimWCmxWijCJtJNwHeWxPbjWvdV03Wl39+cIkypkTeB+JG+s+Z7ABVopQwU+TXmSIi7MKUbJdCYU1p8vPe/NMKDz2ft+DSRdvYK+eiA5eE0Mfbthy5X/mB/PEWVXe64WF0TK0K5CXWAsByJaWWhVGWfGvZV+l9UUH+8KBvA2B1MNekI+2hAnYdOUSzBb+sAlTP4X68EVaeKxhfaSNLSCGMRkBhMmKnHq1J277GV+W3ysasxdhg5Q04tsaMf0+CoeN0+AkcXKoLCiAHwYBZ3nbGqNllBrjAvAqujlxuv2xJJTizYFyaNi3hwnPrFBdHWbYQFw1c/tVw73wf6P23NUJHQ160vW6vs7qr+OYqFSsd005xGxBCsMnbDeO7ec7lOGkriScrq8hrlOjznyktEp3wu+ScHyjGPsLLazQSK6YGW0uvSqkEThPDbzMf6bF0ulb/71OuQMtdm50GgZokIHcnGZXzl0PRFbTXnXHy1l42eNuT+5qxUhQiG2hDPosXB5bpTn1Odr3CB6zZAwS7ecdMujrfqRvy4mZqXJtV1VlHB4Y9UsWiNq4IK/DpHNV3VIwEjaShq+tlDUVXrD+jPBZdjFGLrwFgtGUVn2UbB2tVEBZlbYSbxYwOUWazf4hosBLgbtuFRoQp/sHGHLy3RKSVRGi/UjwrZ5UmhFw0nqdZoioZJrN6Z1UyawkpHf1w9Xifo5NRvUOLrWVzbwjdHBhU0noMH+bKCYj2syZyx/Ny3kXU5t83yivWWWoqoaH2aEt5p2zzf9IMRna0bAQewvvNN9ym9K8HmPQ0glmmeVY6GeS/ekK2Mq5EDxtPlhxuVLE2Q+QGk0gCcvzFS8TM0ZlQlAKW73SKXQdJCCcIheThVRreFMj7Qg6eUIyroUStwnx8WeksjoVQZyhZEfRHewkq6pEh+ToBonbULlKpMnb+UDv4kFbm6RBFkEi3mDJ7DRe4ETLw474mPJXhJC5Xzbo9lpXdgCcNUJwI7waLrZvtidKOKeLX8JPtd030AjkBG801wn3h9OkCtXEV9ND0haSLtx2/IPAo91B1KJ98Ftb7PrHIaLtMij/leBksfWIio+T6qrqgnNcPif29Ec5J4JXKqb9/W4d+v28ezsr4IvOEJiDcBLtVvRpvVVzTFuaBNCvSIrvLfxncLya8U9WiW9WgAkuOCiwWRqIx0kaDUBRwno/oJKFUA6iByBkQytDZAqMrtqoABK1Q54104BVy5KoAUBLp6ylG2BQnehCHPE4bMx4Pama7DMvoc0uVwnQ+QNupWxRYzm9l6nPBbGIqUnGwpRKHMHR4gFxcCsnuVpxWDhfK+vD9EEQGxq9UleryahBJBbYcleT8k5PKgppW5wH35EGkKDRY/cWJIwrhNEIXDM/EqnwHSCC4yBDOD4zDG5nJ5goWHgdepTNAvrPDjbjlTCnK83LNicOPmx8EWUbwBlrluiDMsGh4Dhnwx/bdAYIUaI4vc/KdfJku3ZT3UWsAwixr34EEoXoFH/ZeLDcSxJD3+T6iwA0a57bYMGaTFlMR7qzkYRnnm5UGQBRUlQlclSBXlPPY5i5W0kI8tHccG+gYdwKHH2mTmgSwdJTzoXbW4e9HPKisfIPibMiZE8QO3JKu/CWrIcm1s1YO8hoeoRYa6dy6OC1SKEP/sNIMeoDhsb2hB3+IB50RVA9/Q/yGBgD0qBlkJCftJgfq058Ss4wVNGGtSX1SuD/grK19cC+eiW+CttqzB/IUJnVRpfvmuef6IZIwJy+zC47wffYKCUbENKYPnVckOYH/iEYBluMHQZTI7BhR4kjn029TPQxEX8CNDEQDRuZCey6xmZl4RwXEoLXHE22C+xYGkVnrtIFpo5HyAunycVePNmjadefipadRcjNIkr12DJ005b2oOsaLfwCuWMi+KqUtUT2CI/7RoSu+b5szFhDvFWPJNPwc1DrIxpXsEfID1Jb8wxSMWX7XHkSo+m8gbEhO3RXceSQqH43VBuf0Axzd1rahoy0Va2KvyaMM5x0A3jwsT3rc2BMN1e9NKR8sDFN/qpHU7XFP9wvoBya4CpIgXcJ7NXeL2Rfiqpt1fnHSk2zIwLATJfBS3iPwXwCYXyTSh6kiBac4QmzLo5UNPKe6WVY0q8hhvj16tcKHpPS0lZ0e9xtWQTRqiBfFCRUrYIskCD8TjEtc/3svheBzo5ZxwpmOd9+Z/8cz7mSPe6Ywxn93P5CF9E8pUWyLgr/wM+rUNGS4FE3556eHhK87rMRIY88gN5rW6nDO9y+UugzRzjEtGA8ODkxGYW7IeHNfwG5snLyD0jT1SnNqwVd0SrRyiAMimMlONqA838U51g9cQCQR82VFN3bN537nHKkPadLxJgMC6dAJqzS2uCEGyag6/5Sb7oAavb7yaEUuvRTRLOOq8I0oe2i2y0SqLcFZS+gAueJro1mWcEVKpUE2Qq/cE3jBgh5nxsdEPLYiBTUV83zWEULofRErfXJmkw1TM2ab9oePqXzBfvW97OvKT6Font17eoTgkKUmap25iuAzNRWkbJg13Iei1h9kAC+oBI3+pIftk6tmUTG/rt8zbbFN+kgmroED/Lmu8wEnEJnPztzI1HxFXWV424ZGwGjC7vxGxj822VKKWcSRKfPLu/MC51XMojJdl5mfJv6gdCxhzWhfN50aCCHn2+oZmVKNVXMjuwoACzAZR2zTTJWC/DV0SgZFt65Z75CYafdviZhb2TmqrL4wsONRFB6kKb5TuaHappgofuIPzLpj/GA/WbYIcbtlI19tC/G7x0cdq6XGTet5TgtQJki0LB1zUiJIVZEMZMPyh7lmsmjdl4mJsqupeAoUZj9bzdMeziwWIZWIxcBXa0XfMaoOyLde5WHTmsuZ7xPTTAxtfZ3b3rXj6KFQM4yiumW2nqNuhH3rdiSVOEI6XWY2Lw+J7ri0ZjhC8K6sHvV1V/LChjNIfW7mIkHUSKkVf2Sm9mL/jaxnSNovcPuB+sJERxkCzeq2utIlrjBPMDKLng+uDzfJrM+W9gcfat7xQigx7aXNwJPCUuqwYsPEfb8wumUZ4DwxNqEb+m5RAKV8jC0yM7i9wa8fOJHdRFpKntooI8w/dtVYaR6bLOuTMTLvgDHHTCl24G1C7cfbSuQdmhuWXcujwnspKBBqA4H3wEvozX8CzW2Q19h5asrieigaJGzYi+CsXV5TQsh92MNFHunkkhJwXiJCHsm/ImkC0+GzJbsA4mlMQLu+P4n3nuHxE8oIq39W/5lx54jG/7VPFUXKU/ZYW/jPmBRWN/PVZko/M1HK4ZcVDYk/5dtqOzYdHKLLwdwOUAxsYdTUTZ56yCkjSa2mFEOE38xVbwRHOJ1ygzAHkYQJwHFmrfNaM19ZWfEwSqeo67xsCsERwtsZLGCbq+i3I0bq2V5dwMx4bHtBPotsUYFbEjnJ+hjaGHs5V5eMr13h6NufYkGb/Q7JnwNH83TZKiIabt1j/+0QH4O6ED/XrL0/mZkfTeuPSLABOjZhO89WWBg5qZbzaWPf1TojOG2bVyiUTdCYECHsuhp+lJ7v32fi0N6Qi70//tyJOWq64fSo5QMTUXT43npFZ62DXiKKRgrWbEG4tk8X/R+0Ki83VDNf0zRTI1+OabUrWOzG+P9IJ3S6hnU8+6Mac+WLyiTKRfgIih/74m5T+ZkhNRe/xBo1+QaTyMHueTmc4SRIlrYChGnx+71jJ8L2lnS1ai+3OCji43j0qa5DSfUGDlzbrWGi/UTNnxbtDjrBRdd/zHLyzu7cVDKveZwxqfVHci3Rb6nEObKN8A0sIb0lHKTUvrp5Mik9dkkPk5PJMLjXEs+FoN0LjztQ0Y8uuETvUg13ih3R/hlnHGqTJLkXAtJNY8gwDqYWkR17vZx2GeYCX8TpFJCDr34RpHLWbrzgQZBpFRf7tbs/c8zJD3HlqpgQRLXIhK8naRD+p/F/+HndEuCJTtlfiszc56mJYBRh7xz7OzcJjbArdnKANIpvO+HoL4Jef81dkDzv+pOkY0qTsept8QiG7mkVQEYcloP4zM//T3LNJgLZYxS9/ZdlaLxhEgdjgIO4yrEaJ9+SvxjzVbiI5IHZCVQBU6fYunP01IBJqPvPFoo1zlFs48cBiWKiq8iCYNPDV7iuYEDjXiCL7N+o3UsataN7rQ312JT+ftBO3TAnMl7A7iZ31c2FEcke9jVfc9LSZ1Lo9dW60RtX8q8K13Lgn6NPzEOHkRaa16/vpMtkm0/1ntYpRr2ZFyzEt/RWPgYP7s87qHnuiIcYUjJZHIJBkemzyRYoZBNcE7UNTva45KszJWyH6fedZ4c5vs4XXXFWnVes6g0AU6hescLVRpL5eXFFQs8Ya6nrBNGCyF+By8AnnWEA8dK82uP3tLu9M9TAx6V/YK0PnonYkygVAREk5e1Fqmz+XxPJMctHSocJDel+8HS7jbSD7YQNmNPmVeex5ePqVwoWnb9Ax9RWbIoK2Z8J4pVKnHFjXZ44O/OjTn++NZ+Y6Edq14WHXcZFK3iGgdY1XH6GPQxrN9R7JVkhWZRmITgLsRbssOi48XfSa/2Ky9rv9pAbUIrorRWuXPUYZO1lxa/YfLz3jccttOw+cyH7iHt0N8JBQartWGO3oLEm7a6upobXNMxAbt67ogM3rsae0/j89B7UBYDRw2CjkXAXGhs9twOrA5UYpSA9sfCWiOHvRt83b3B6W8qdN/Gyc6iqY6SX2seSMxOHSrLUJHbZh+dvxLcUUG+QtzaIR/GCRkNV28qMAIwbT0B90+muP/7WQIIV4rboniqmWQcMAzJkr1tOA5vR74fa68lgQLbfitAITByrqCKMmn9BIH9j6KW2AHfaXNDz4hGQ+b/zi32ckyAwpSMrrEocZU4jbDNsHhuluaGo/4btB5aFSUI1Rv4TUYydpbFQJb/12kx7hcPQMvfXGvt5InnW4rrU2Wpzge3uHsk4jt0Bvl6BKAUNWPU53kP7QTF49tkRiB8D29Nyxp64304WC4Ev54J48WcM1xw97307olEZwPYBLFdiJz3+gng2NjV6V7+N/Hd+ozMEZUqUQcYb5Rxk2hVkhV/O0E/mLvrrHr/38cvTNJSClTOxkbyAmmvK6ybDj/DiTLpgGeAVSIJYDcD8yBtLseqJpnFoTZES5NBlav84jTCm9Acq3kG6OMmbUee9Z3lmlVUvkoPj9Sv3l12xYt9Adb0g3/aY5XNgbDCIevMwuYjRmyIfE/MLVY9QZWBMJxWuQIgeFJydq5Lb0ctgp+YmJeQlboDl2zF5PuTUemz88JAK5LAgrxFYtYAzt1VeO9uLO7kffCyF08RZci/R5m9CKOF542akXgOuT1IMiqkvjekz3N3TTk3cNz3DB00LKoDOw2OmTSNzoSnaLStgBzOGWmYPmF/Yt6yWl4cbro4zF76YEJrsQ+Uh2bTFT9wHeHSg98ca1Yh8vYxHPN7R66wYiFfDpgpR91W04sZltUWIe9IaXwkCiHZHI/yca2f4frVoAtikfwKFkxIOKc+hHKdl7+fOfIUz0f/XwWqTW4D/y1UdUY/HYRBKVCb1R7HzIJoAb5ReFdPXmXGS+VN242DVZjzFJfdf3TRvTRjOWpa+Vx9oHNZ95Q19YkrA5SjEZJchl/n/2XSiOiDYX3uMpu3nqOCltKouM9XztXZpODFRArkCUXrictnKSVYPolDpto3HN7qZnBFd477mqBHtT/Z2D0CFeb8dr3Q0St56C4s4WSEYfM8S0QG1FC4sBppNBJF1gpCja1/YuK6o7LgxkiwDYAXnXANrW3LILmGxhVtPttdECF0OHd03Bxk027CqTExP91KlMu5uPka6ZZ6A5z1PDc/RYDyBbP3u35SnXLwheeqFj+5LZRJCCw+H90JRqQ6Jq7lCNJHiTGAUanJXtOVfZfRgFjmlHXLXQM0bi8xbscczKnyfpisQ51ieYj0rwqDfGvSbjVE+aI29diqJPJNfrPVhiySZmBvLhjLfE41B8ZfPYHgpv7bZfJ18TSuwyM38oBXYY81u1BOEyO90Z96rSzdi8frBAjWsHc5zRZ8Q/pZt9qwB8F5BsCiCCzOfuQsKvl6UbL2k4iQ/qDM5+oJXI/sceVrbtNxwa/EULGA84GklQ/3YGkRWd5XtNvkW00YLJcjbapvnPe3czW9u2TESfkVh97SZbxx/S0vTyHUD5tgH/wUglnhpbLius7poHhXL/QljWRMKOQfDPCbTw7/f8o/Td3U7cZuEms/uttL8ciVXuYVIQw91iNX7B0WFU0z+ZEVjbH2U9w9nx0XutiLvdr7UoK6EZDwqZVs2bQZL9SaOwM8t+Hx797MQCcoMRMWAeK+eMGS+aJztJ12mBuAGgE3H7ZI2+eLsMoar65lkmpkNJ+8LqlehOLH/O8KyvbjaRfc6yAGdV6sthWU4YQl9p7pIr/MfFwQaWHRScWZDGB95s1Ud/ldUwpiBMvq7q6uH1UGt0JVCSEuYYE7SVpAy+Q9nWCS5e8fYygkZNpr4VtlFa/A12HRjtldUvsEAosiE7UAMzR16tsXthitZUV/XaC7Ppl3qxgfLw4dowYMgt2q+4WYGz1eyCDaiefRpGycj9Imy6DA5ZR1P6XVxtmyrtPeptR/zfCky7BJCpWWBpGEeYYK7hRFcGvhCEE0QYbV713SndKZ8zk7wfmzS70o5kuVnpcRiyuLfNTLFZMtdSmC98PIkD6qhAB4s+yGv1UryvQll7SKhB3DKK2P2f/NKZSwA1sGBhorQA/mI6dIQI2JmlCaZQZ9Czg0CJULOSVHJD0838fhAYtUJ3V0Y/aGmY0Fqb+pWiZwHeVZ0e4d536zwOzWr3DSBWWw1baP+QMi5ZKi+jKlJV3nQhafh7nBdl7ATTyPRVcboqP9IOah2kGvAxapGGYbbLH4YywaXUg2dopv1NP9nm2UQxGynFhYs8+AHtdZV/OPWuN9wu9O/lM6I5/qKtp0yTtbmpfc67sm/emSjKXjbGFUFsfQ4nkAgk9LVyBXr8xec87TBm12Wdtkih3EDcvkdAL39qcXQynDBYJGIijxHp78TREKqqFa9g5YuCBqJt3gRbnsa+2t+xyBi5mfIDw4OjZp2BEo1ug8WhqJn7R8MlWO9SxFNPIEO8n9dCds/WxpCzmreLbD4xs5/nQMcEmNENLnaBfgq3lOJ0Mc1EkYs4+6sPRt6Arq5XsfN6vgHAmupQffNR59/2RhkA4nTF6x8rIK0oWPNKaiWQKQCHpFxoLecTICvFS8u/6Q4TyAHk4wHd6SdfIwPe2qZbnXszftLw6VcVNjsv7nU3+06WZ1tGRldFjahBKjYPWbmuYk4hU3OY2RTDmvE8EeWRp6yxdnwrLGG8sr7Ax8qXq3doatAnRpbTisEKZhjucnajWYwM1ahkmkNJOqgtYc+uwbKwz+0ppgl8kENJQVuMkmuF8KYFuvxbuzWopE6ja2vbyZ5ky8dTIOtl0WBjumlf+2BBEouLOyUvmwJ1Sfx/q/IEkZVs6VTpX29ia4xBDldG11mk9U2BiePL7YoDJgIGyIF6lPgPfsdvpQJ2nABZnAWqCdRIvr55kUoWsjSlynhOt9Kox5lCxYEuQF/siKql8QXL0R4QPuKtpYPq97jr7t8BunlrR6FeQmuVIYNgOiOoeNogL4B890PR8E3obVYeCpparR0PJLzAOTv5LznOR/MMgbM6I679C6xP+locztgeDLSLfxMy+xmkGAdKDn911zLEMaCfNp1u0h4Kh1AFp7DHERvx5yDWMukGY3ycVi61ab1DttHdW6hIOtUXMDLbcpc/crqHvhrryrJsTH/cIMxnX1NA1icwU/fxarXWB5r195rugwRIxyZFLfCrzmdVhgtRBC1VlMQOecQksv8WOEbEBxpWKen+b8FYPPJ4d/P2cKZuEMW4vJhD+ceawHej92eT+Nh5XstnDOKJdX3xW4+kELgR1EzHzPDhj+CdofrSKFyd2fXqul7Tt2uzMb5n39sHjhbNpjXVEwX9KguPdAKJlUdW0VUimnGg+YOmfFHilGq7RAQRaliObV5jly8t/15i4C4/xXI2tfCftrbyBuUvc/FCQK+0DrSTsBAENEo2jPLDmtj1iGMoZVMipAe/319xKVfFra/wH0mjjNqH2m8zpIrN4hTibHKEyb0UoyMK797KU8LofFh3+KaM5o4vTADKZCUik0edPjEJDs2XXpi/GMgB4dv1GRJumVL8ZUAC/0/Xdmx1SV1IFj/vE3jwTUyJJ+TxfaW7yIl8yfszAdi/55j/GCDYD4MycFUOToNOA4eGviYxc3zHROHxDGFx6t25+WYNHHpgRxCkjROVDMsu1vd4LiaDU0glfCTkTnlGIwu2RZtepFtsjEDifTkntl/bp2Nug5Wr6VSo28nLVgh4iESEaN6AsBbFJcjxXJRojzN7cCCTZEahjgExDAdO+34NISUDhRYTGzs4w6k77OziZpLQPpX0SM6nsFhp4s25a+jHe0HCTBj1hVjCpMfmtmK1bBmxe57kur5Dt55Dg3UXoFM+lYTupuhfsSyVGmmOZEr8ZJZNLmFOTZWuts7f5+l4bLYE32ss7hr94pEnT6kFQGxqPZxd9ga0H9Ejpi0/bg2P2hNseZ7uPUGl9qNSlHabLbWCaFO7eK9C5kzWHje9p0P2gghRA919NPwzr9GotKXvhhuVs8QkBv0RXR1/TYr8tCIn1pEqjhOuJhTGSCcdL23n2Re0qgueTh4XDZydrettKqXCDlAAnc3WnqL1kUMyrGQIa5AKgRWH5g9zWlcZNj9Yh2nKwOLagEHXTHEVwhuuF63IH488yyBDgpq6k4H3/TAbJUj3YH0whgK0JsA5y+ob8bpYKN3iFm0HCi8MaCAIyoCfKJt3q0NJURHbUm1p7jkEemF3X0NK+WsGFGJl2q56QJVPmrlyEtlVi9ujeABO0mOBZn+oUn2uWB92/buz5RUz0UXqQqSvjIE7zXx7MFFLZXotCbKYQefRzAavHOUMS9AB/G9mbQiZ8JB/cMI0XwV0zcPnD3Ye6CQ+H2QdebxOVRnWbQGqkeWBqedjQ7+cm04yXpelxUhSoPSkdgXmB24oaLhabQA1B0Vmf0ob0I5WNR88o4xWfCHzXGrtYKrw1J6LxmN/pYcb42o3z+v8rhKM/M+fWX1FQWxGEWYTBVpE103JpfRFegvIiH6By8EpJ3O6+aH1rySaVcpZc/kFI8Vfk3T2vlYNCqZtl7f08MgG3iVxpfxaTLwJSG7SPd5x28cnTlInhbZ1D5qWFfYGCfj5IjmOB/LaeLBmfs7uiw2y0JZMufkvEGfvr70rLhr9UOIWpJyFlCmfzWshW8iW9Bun79FlD2ee6uIKTncgfR5O8C1XznoK2LpWapvhES3uBQxQECR26ZivcgOT++N1QwG0BCz/s2eRNWfNeOKuCVPzZ55eQTdFk1S/3MO33gKCGttWzb400HpW1SynvHYIz7M+4StVaKlUTXtzRzzcB2xC6KZ4CxvM3alRfYE/OwAtUny9mC7OITxoJt3A3lemDu1DPhRsZUsw40D32ktz6O1K59GtRjhUfZbCJ6otTHxrcgFNhZx6qry2TMaZkGc+Ru7q9yy77F3p9C3TDSgU3WiBHSnI0+1u2LfzEob1Tjnc3KNPP9O8q5tUz6OMsE/cEZ1FZl11jhzFkur9Ua4/qgpqFMjqFMBt05dDEOfjxhUQdvwOC6lcHdm9TDS4iXlg9LWwdM0UOP2ORvAV9776O6xJsNc5hNJZiDSulG6tTSi76ychVE4B3JN1LVwDM90VnnvE/4E8VcEIgrEhI46dtCjGvFatgvWProJ8/RFMnLjLq013dS/wSfHNHitsecbl+D1LHsFfFPqvtrPahK7ThmooVKZHfIIevkkn8DNdgbW0rUazumaWJGrZXMLCdd8AezMOeEL7uUZnVHOWICWuEID6bQ1uuOLZd4LjNPFU1RnfDg+V5q83SWa7PIDJRqInUipx7nII8xkA6WlRI1xcui+uTH1WmyEpJ7I8jM1g2MAgRbPt6C6qdnMV0seqX7YT8ySps5z3JwBvtEZrmg9EDyfJWw2dBDbhaZYi8EOozadOL016h9T9fDaD796IUkgOwkY0brOnHh7aamE+4aBmEiqGDwwX5ufUgK1gLg8Bk9tckki/TKue5+j8EvfXpKPnJHQqCQnx2dT5fNEu+FoItgt2NEItW7ZLQGNty8xWZiaH8plR/6D6lH3j8Jkc7iXow4MiLQWRnRl6sGL0uE9fj8mc5pOcJmZ3eIzWS7IoJqo7ofkRIuKTBxW9ATyhG94r6RldKnJZb7qLEBsV658q4Zp2youPmxswAB2HVzbqTrGFhNVQMZz5G+baQQWFXP5YXJ0WWVQ7VAPYInluUh6jZV9j4XmGbBrnI3s/5atLDwAA0CI8BaaO0Kn+zJytFjGgaAgFafufW6FmeDwVAeYDjZ3A4wm+5tWOL5u9nx2qLoW/Hrs0YqravL1E+iUdNm2QL3WGuphneVaUqvQP+ASbe6oLkzSKNEFLX8reXQj+rmRHpCDI/evXA+eqq2/muk9X20bNWigZK2ItWWa9APgzS838HtXaRgxXuM3JJQ3PwpfPbEsl6Yr6g+FrGm+qYYt80gFFME31FmG2vkFPdkaV8EUM/glgGveyT+KeMhEgnudvuaBH4/Hmb2RZgXALCoXHSCjukueA8JzGdwziVIy5LYOOIR7dNq14KM/mkKZhMLdrl9AZ3F8GMwmDvawgNjsU8MRI7aZvy2cu8Jcsl2OQewhxneCXo35cfFm2iXbE1igRtD2nmxmCWiPQrROn9YDRy5iiKEXDPMo+lVj4/ztiPDAN8dJVfr+1J/KQhAhC2LfDSPtjkYDNpm+/BJ5KFgzG81vdwvlnGjPKxWT5TH2+pZ0Uug36avhaWMUxUiXlW3AwgvIXkW6UjevsBQNdSMRWZCQzm6468rL4QG6sn55XviIQjnCKEtnVFdaVLh1aXdyQ1mxLdclkweQy/PdHiW9JLWXTR2rJb+GsGrHfqbv48fllcvSvJ13URtBq/Xrvt4kIVgz9K0cUdykd9AvLATcYXEzaeAeoE3SCyEsjvuRvHJx30b6bWTZvkyQKJNoiVGFq7QsWaFbo01UDXS1o/ULmvmRmVqGtWVXuep4puNlRn5m95K+T33yKzsrgkYvuq4OwvJ6f8OScUkqWenltvAHIVHVE3C6YohXVYz8fd45VilIbpt2+VrJVl+srK/vfLsXxPJBLwtEs86nk+X3h0SpCWWNoD4jtio7/ACM5bDXg6GbfHxgA6gbEanHNefvzwkRA0l2eB9mJrDB5JR8LQvkQq6CCpRbjaISvngY1gfJj4w/l8iwojIS0bZMeOPf9FWLcD6/pZKpB4nxtqkR1C8LlCCqQSGBH5w6B1yUPH9fDsUTvyGUvWujUvW8rlf8LEo0i/jleC9THxF0XKa+7Q8pbMMtZC18bxPfNz93ghlOK4/qvjh+G2I1afkyoB+t9mQA9MmiQE85aGsLqwS3sJQba0NvDjcgwOTGVmB+lsfqecu1cW3ysFRaWJzg77HcqEU4D34uVOINKpqBDxDCUFjkHCsu7SbiowJDGGipq0lLhVspt+FUABhn8bEKbvmJIeQOqc2aXUix0ghfAoAtZt7+LGX/fqN+0prJIY1pgY0YlznlJh3wIhYdCCqWwR60Dbk/K2fo9yzFxe18jwYf3qcAAyRIhDPa9uaQO2XpTGAzVuzI9kWcHScPJNu1CvgbVaLOLayrAImkoPR5lyd91tmim56+ScdNwvW2692yLuVbK0FFhOpV0If4rFwHPWokqoPcEto4OMKI6pEgfARd4CsCvrTJj8QGZOJ+6/Ce+8+n9LC4wIAIEi0s4gpZmlhjbF3tCa0hjHI1cZzMP3vR9DEj4sIRvgiqlkkIjHWWx8JEIsBSAlZOD86Z9p+CP9ytjM3Jt+XUZwy1/+zpdBkvykv93dXzrNRJZHP3gBwJfzcRyQkTJ5qwU+qZDU3ORQKrx5At2stYeRQh6Pvgb/PFLaRFHvZxjZkxdziyAGUSxwP5b3Sfe2WNwd92oEQes+PAhObMxL2N0DYh+kfME4IUiTJxVGgXkmt+dFmBRm+K0KAKNKejlj0E9d6kEFIDvM+XfWncx/4Gd647Fhu/xu+zhImrMVfjgPswgOu6FKLgzfzloFYeP+qluQyRZhcqy67EVzJtGAAzPwM/LaldGmNDQtJhPsA3K+NoMnZWrLK04ixJUnDSghZbYRTdzYFkrE3y9fpzSaG3Gv/7ub8TzCVFTz3ezMX+N5n3PMQtEW6FJ78AK7kyHz/iRHLXtVACgtldbfJ8wfPC9Cr5uGttjmHSBFVkHnHknAlOJtR9Alj4QSzAz4mX8KA2cze7QRjWUZzOCiL8gVeeQmiIGR4/iukLnkCZKZkVaAXDfB5T6YyB77YmkDRiRFuZMkVIQ7UAqgBenA80ftWtzEJ2lDA4aNIhqhaLSq6KxN3XcEgNe15c2BwHzazNi9Ak3WNG9PMFEEU5BoL4L7wi0teWMwHys4AaDZk4xAGZKTLJljYnG9kUZQDMykOG/fBjHJRHUBJXxCbAxeHgTTBSNP3/WGUF6kD6/UFba15abbzEBbCt/7q+MEBVJ21IRvs8RkUCMWQFa147HmT11seMvCVqMYbdOiFWqcG3Lj+kAX1XEBw/cqjpQQ7tHIX9kJN/C9k4xBk7FugXfmJngs53nMz0pP1XMlK1tgdpcmftA+gXrf/9yxbt8w6YriKsVtKyZOXOEtIVtLLi4p69Gaj8Kev/NzpXqfPyVCzC2ttxwyBDWRdfjmZRi0kvBOEkRajY43CiC1goCt9bEMbMFzRL0EfcEr3d9qw0KF8/z9YpsIESesP8YEpWqgHMpbuWJadudarQnni7OThGjs8/88a4m0Hd/kC8QAASs7/rBZeP62jsXLTYYSfnmf28B2oJZ72ifZfg/zF3RGAyihGKDE5UC6jibMh874DTXDDGr840SJCU/tD+vM66HiDUxmusRMgAKjhSOtUavFOx+YBdhOKNCrWSimk41KMx9s3fo7O13ZNicGjALPX0WQrGkHKOa+uvb6NEfadFhUfqle1FdCRGVCoe/kDm7yHLYo7B8MRr+sd3AosKEn/59phSvuYh7nIvyRqLEKBVfoT+rQURLnOXYUmge/XkEfrLK2TuWMn8tTS3ZLwMwkA72ZQNEbasisYaExWMqvBRLZu3VoLobhs8h9FkiqCDmb+rdlfKym/y1yHm9+tvH1i2r0gUcvkKim2ic3sESTNr6teg7aDRcq2HkPKFEwIX+U4/7lfBhi4/M8EHk9Bgc5c//5au0BhN34qTr96793SaJctrUEgZoV3N0oGNcVLFae/iOjGtmWcb50Am1nWwK9Zdmc6Dunb/2rPsTp+NbTfibxdu+Wk7ZEmEOWkFYd4abrxnTio+YnHOiLxwzexfpHbW3y3Y30JIOwkqnC+KKZGWDTkE8aHAfklnA4HA4c0UW45wLAkdonZuEWiCOEVg2+Fl5I3hNztWWGizSIEHCzGDK1uas/67p/ZLJtikyOFuHMghKrJbT0484ZWuwvAsWYnsHQHJLoYwbgo4JU+RNvNySyDLyrULkCnYtq967+rmmdrOZw3BXWCI6y0MuBD2SbWzDDMzFf6n/um7sNJT5Y1ff0PXHRmkyVjAXIYkNCwZjtcll+Fwz0bUAEY4X24vbHTw+pMpIzAUIDQ380afMFDhow8E8SyLLowaSHja7N6nzLkXAXvjCfCP5C+gj7F8WoXREyrgkfyL6ooOhu9cesJqXFhbIPnpcrHoOvalf72dMcKOBeaHYLqd3MHFj16hIjuyR05Zy4StdOu7XENo59zJhbpsuiSmUtSMEmTkmYFzu73vAwvhZmB3qdDPk92U82EIRI6X3B8h76+vItlgkiktllherUxhpWuxBPt1cKj4KURIyrHe7A+5GBSwSd7XDcGqVjIyDaJziXtBJJSqvdlLgsKc+OOi+ruSNHPesDpV9Ew/PDv0MsbjSRVwgvdk5rSXwwv7syTUO70Lt7uvazVBtRcxRYDPU9OAB3u+lqqFjdoiqgJK4xDjxqDJji9SHfNT+xr2EUxn40Db1yL61NIlWKc63M3oljXLPOEhxA+wq7aBvfhJa30GpnsRis5IYdq/rYhXamhT6sWEfH5Zseuk0S/kFfAa0osmuKjgSvJrNUqJeV3pAZCLBK5oDyywMFEHp0SR6DychJdka80DOQaMoHX65UNvkLcIQfx6kP7a/IXr/8w5k/6az6JUfeDLuu03Z7V7rAkjxmwV/LaPrHG/5XaW6MY5RHBETuA+bq2mRhRA78d5y/8wq2gVTsmbM2w+7GtXLbIB5x2mR6XQzXFU55vJPfyhZIzTD/CH/A+Ow8cTmsp6oMK5fNHLLDiMKJkHpklTEIhMZ8Xr/NnOjd5XaHjCipcrxsz9xdNmHUps8jkQ3TAZYt9Mh9yfiNijlY/JOftv7dtRGXWQSNwuWdl0Ir1iYRHl1eiMZcN5ufxhQmBEj6c6mz/VVMtrxQmu9xiah68HwKczewuuvlQLeV78XLjnVQlSStDcTJlDBQ7s59Uaz7by9U5ZBJyalSJbwcusAk+9NBiJYeE9thMTBI8/AK+73ShiLdYoH3ihOV7IiE81fpSOlhlQwANYHvLwFUgl3fZ2SZrEIPjK0+EA9NHsxacCP1B9Ij+f965reLvgq9dGitftD5vFBQn5djxmXEHIulwZIlmLJt/26F607eMOmtZr+N750Dgnyyi0TMdTHCx+pYJ2kaLDeMTU97Yd25K2bjyPu27ZAudJKnmpKjGX6XqTXLQMaO7QUiykoO4Esikn31NQQ7EnISNHhvM+28Oy/gurE+EEAEwMpcyStjAq8AW+RUHwOkJO3GKpPoPK0X4TkYrnrdLPgu6aZxxFfsMtpJeG956X3V4FR0qnwC+gfC7iCYnnguuAizL/whFnBHMUa5FLI+ojFx4brImMIuQFiKntXLJqk2bzcorEhsT5xn2gBFP6EJytt/nidD3q7z+y/HOw7pEntRn/eVFD8221pYJO+hddOYRp0gyfyRrPSK7o9dubiSAcp1tmnNGFG9h3yAh47qL17KVJ4oJ/63CLE/MX48gKtfbxRr6MV4DNijE8KJua47LE3+iFjXufUdHrGr2IyADuPxOQtJl+3ubI8UfaEmQ3TH4xmugKbEGTAUncq9/k6VGDbvLse0jTZ9EjHrsX+tJtzfJGq/5Kbr0WlZDRs9gNlWG3zI/0MgUxYIvs7P1UVb0Ek1NQNOnUb7c0SCzQWg6uFUNcUTEmTov+HhyG+TW959OnwDgsbX6aSSIwccb+7bRv4RHvu+enh+zTxo0ztGFyCQSmCRYGFfNHq/lzs3BD5l3IAzbI41B0hW+BB1VPZjCH5YVJ4+qHFN/lSDhgsCxZ5MBTjpnTbd5mv3dgrSt6XEGeOPFar5p9WzSXaoKZEH7gAspB3DwtJhHtSNRJQEyasbtQCy1ZLcXR7QJuuPlfz4lpO2MxiZBmVpGSk/6fNYs/YklQumnpjGqOCfpd5UGVvsTm7tQI3TjrtsqUHeEfQ1O9g0LuOPE0r8oOdQSSAwaS8kqHhpAgsgy1ll6j0NAoOgPFNw6tGSFkRadwDtheuwK/2VN3H59lDEOmGprrFhBucG48DuMXCeHnJ73GE+GHb/ZvASRj2RdqDvOhpXs+ZVp09cbLaSwcp6cKw1dlkAbQpFLaIr2GJZt2jySCBPX9P/dP0n/+Vh/sWsH0wl5AuCIUHuHpd70y6F5/Ia2Rp1zAVl/Yk0TXp5LVR8NsDHd9mGBNz5N80pg+3hTYKQe9izD24zF1IGyXgJ2wNcaM/wJkHzLAdUF6C/R+1Mzvshj02BraNrwMQ/nwMCV/tH+V5qW0VA1FbcwjeRrd1uMTXyCl6cSUYI90giKzNZHBIDMUU41mcvxf8EFPzgLROxb1XenawrDLFqc7IPVol+8F28wUa21l58K8LlmAGcOlKFpT9QD220DY1FqT28XyJOsmvQSQN0yWeHsgCsk6eGdncaMylpuFF+ddh/J6Snr7aOIDHtN4gs10S6JVbeOhZ0I9AgKmphz74gVwyh3tD2b9tXdEFlphnIKwMGkNzzk37SHQigfpd/1b3XgY/GL7IXxdCHgKcmEE4+ov3xFC41XHqE24YRLJO2grEChjBPa2KJ1xTJYD+UFX6LdF5V3I63aiy2mvge6miuOnfYkVA2yRrCoVtw7iuFTFn9pKX53OPL26PXEFium4gx6/6MixM+jx/p8qMN1M5tC9l8+MTPfSvPggTcWKv18M7pGqkBTTqDNEs/IDiJSStnxMXOpa/qr5ypNez2kfBqQ/SRRb+VbOmocto78VdIsDC/Gy3FQebekuIBNRWQ592zHmD0LqlHyXn9LbZHJLHy+xgeh3zlt+WcUgNClUikWPCJHJfhlmCq4D+Y6QtwkVhB2K7v4RrNrKPLf2RpPTOLBLA+2AUqaXHGvsHj2Q3Fkp1gO3xMIZ3D4lwR7Cr/yixlFbmthHCshCRncq88x15q4CihSWJ74SmyKL7+3hrxbDQn5YuU8b7ryIzrvPolMqgxEmWsxBcN2vaQOsIUG770QyW2FpwMXQq6R8Uvcftp26rVbV9KKoHvV8WTUVPN2+sTPBzmMUTtlwzBNT2JRO2azJytmQvJxhjs+mDZk1FZNvQzSosXRyCC1CqxtzHVT0KiVj4zD2Q0408ulJuZqHA4h+lJaBNPnSWuBgpzQNSbdUNipV/rm9IWdmGe9KLbxaluGnqA0VwdReZNiM4kcqcY9uJL63FJ0+NinZ4JUxdgAw1Yo7pBcw9LH4F14QtCayBUQqVbmVSM8S7PnXjNQRkRXI+B0ST3l+uxU+int3Wu3kNYjFt1A1hxl0WM3KUIH3DexvrS5KnEqOFHnYAKoVANH+vYP4Tuu5B3dRLmS0MaibmAX6Z3WlnZhh7XH0JsJeXIk8S70ePz1LwuvYBtVqbVhaMHqimdrdN8o+NIKvFhgEI2/NS6sARTrMHyg7TwFZuBQ1FWiwxINgp/vKR5Bso4+nJe+NtJX4csfSTic+vSAYl1IxAmnjyp071DX4rQvmx+1raCPrvS7eWPhhgjLd3RRo9QXi5fJSbWdQgU5CLZseJiZf5FhmjK8XxqeON72DDLtda2uHW3xjxYJxr94mzWrttFOztBKkqW1V9N8d9lv0+i9T+K1YGm8A0mRLFeodFcDc4VGdlZ1wtWqlkfqLpcXw3hfuCNkVpGoUS2RiZ31QiYBmGvnOKQvhvkGD1/YHnT9nppUswV1SWVpR7RNDnhL8LMPqilQCWo0iA8mYOYniQJro/Fcfi90+3pvTZ3LkZqKUf2MwR6o9t+9MyQ6GhJ9pEOAg47lFQidVwHGMP+uXPuotwniuLFNf/LxvcynzqITZ81H3u63aRUc0zXAZ1gtmnzViwJ9xYdHX9YokCl3+yZsuHQPhu8pVqnQE7nttbJ2jvsIOquYKQRkj0QCGMDfEVyoO1y2qg0WGUOofStRnz8gbld+ZW+YJE5Kr38dE7CSETvFg/ucJIjnCyLWoRN7CXAHcU46tZqcYUeDPoh7MXZL/kEUQxETpYIrE0boO6Z3Z8jRsKblIElsVKIHvXeROgJdjRF6WfkI86PYIRFfInD9Nx/Zp0glIkHvQlazKnEhdczJG2tySf2u7wvlkrR8W3QgrtwybSWg4KmN2arwItVnQpuUmfTNBuck0oPh4odzdgn3cWoAo4+/UsvisoiFA24DHusb6TXRBHkBt6REpOLQ/YhWaApPKsWVsRsLsFATN7D+xyD2nJetvpGIXTukoS6vlKHBH8/Hww+1aCJyfXDirX4eW39Wo2YavAXFhsjif2wGTYUmYuK5WjCwnBV8eKVsdrsLdIqDg2JG0rNBtF0Ilg2wG3aYPOuBF+Lw+FRcvMFjRt78uTcoUvbGVhE2RFg6r+9/DVeQAxRdJL6/8ezzdPPyzlFQkih9LJCIuBrnla8tWsxNR1zawI/2jAundrZ+P2F09tgVWmixbFWduU0x0npe9KNBtikXIh1WrRH7vTVEl9kpibV3FYt/DC4oSbZWZu6g9B/yIbZrw9q6jo/WZPLtF41XaX3m70GjN7UjdYphu0uyDgUHxwZ3r83K0E2u1AP65hIxAcux/TjIzzedEOLyb1mK7mo/j1078UDeNq1xXM8eV13UxgfOzUSpVv2HR9+lPAh484s8MUdkUiD0OrRjksODIoqfxxCcMgWPgdbkFMkcvPnhiqsEZP/HXB5XoFqVENSF67+O7MEItP6+WrtAftSUwCCAzNDc7jM0uyYYZCKLkVWVeI7TYMhBaeoLsji/RG6dO17QEnamyYD2tHA2E5d8qaS86jbRuQ8qfdzLOwydfiB95Y36c4PqApdj7VaGQFW+mwcbfRcQayT6CCqP1tRm36fUp9uYDceeeAkjWDUg7/sBl7o96zyO/yVyAkidflnj6NwZr8WDOgPZLvXQXYWRdV1dN4P2XYDUe3m280Po61RuSo+827wP7z5CGulbLXIOnsIGTOdDxjBJVONc++LfNsXDQpyXEPYeXmhDNvqoeeu4CY0f8ahCT9nRziKLHZyDSFXwEjguokl4QQETIXjQyXaHD6hupcTv02CFe0Ltn6el0yMUrk6dxwLymLc4HI0ZV0qyTYIYoDrRYw1Y391URTu0icdUXmrsXUDf+6h5cI6nC97jhkIMa817xtTOyT7zk9gQvbTQoA8N7BcRY7pjfuiB/95vtWF8X3GiY9rmre6q4DXjmAmQKmK+OWq4xBlfTFL3wKilq0q0yEeRg1kwVgISOYBR2LSXyBu5UiUgdvWhbt4t2m5Yu1MBSJfKmKB05oT2P742YSB4sQg/02gBIkBojBtre+AFauI69BDIR4zMmJVvotvP2qxIHhBqTPJ+SLO1rbJtGlZ1b00hbWdAzcLZf0qzrVP1w4Ed5Aoy1w7nr3Sx/k4ehXjvpCVpn/n5pboiXMlHVcNwuY2kBx6WEobKKJqB7Te+3gAYQM8nidM2mr/dS6v6TWQMORpLJjNEVjw6A8Vth1ywN6L+MkiUvjU3Di81d8uO7pNkhthKuETrGCRALjoolbsFq7ETFrcSkruYgnDWpspBcWZg+Znkdj8YLazsaR4l3FQWHSbG47JnHoAPqxu83Go7skMK9XuPhc514m3hUeQujpjAYfU5bqr4u0W9TUzfT9US1Xb2cF7LJ+wlA3YvFgefSM+dXJj7WinYbsfiLQhktS1dU7Hf1kTH+BTBroor8ZIV/nW2FjLioexL2EDgo2r57wb7yFUFxqvXiVrbFVw2SUjKVdc24dZfbVeB04QbGf53NMIT06T4luiO+t75CedA9z+URJpR4qbU2KATEMSy3OM8KN20WiXgm/p1HDuDfAclmIEPzvR/WDaLnmVuOZszkF6MMX65eDIUXCjzavZ3UzGV1NyeS15pPs86m2B/JLdZBNBES4W0UYI1vMZbQP8h2Vu7OpfsNX7ErgNqz9jOXBhgeFr/qxpZFs37OdLNNi8OszeBv1wOfVBTESQAa1KmAfJmT5BuZbsut2D5ifYZfWAZsS2zLpIgSD8uEITxXXo1riZo7mXH16Akm3e7xdGOV9a/yRFuvkfFtc9mU2NOYRL3+2+rwkRfT0s3rBfYJ9DWqORzuYbqJZa0SYwYkq/j+oJImrZEraguuXeuG00h8x8JUr+RrPr8lkEvJFJuGycK4Wh/TQslKhPWzrzQzrYmQGpnPptJG9SsXfv/RPTAfXhooBTd82rFrAtmAS/eq7YP5yTAypxlMdCuvflgaZ32hoVaptdyM+9JU+Q4d2CF4Jx0vvaBJKVk9ddWC6sHtHP6COzPkovRsTeTkQlWWmhE8z4wXwaWm3ReKhAewTLHX66jz6vHKOCWB6ZdRtM4Q3oqr56JqzVkdIbgJR0dzSS5F9LEhYdLHhF1J5Me+yVIlfaFDNEC5bevM1U9Pf0ZOos8NZkDAVlVA8AsevvW0BmR4vBIrpRRNDXPcUJ14Ykp0/gyZT8RgFm934dLOyPUbphej7T2dvIfk0rCwBiDwb2ZQT76DRF5bEum96RmH0Fx/Az9rSZFvGn4Xk5z5p1+u1yYAzmjmZgcnw/lHOfjjEJe9NT9UObLNl1fTb8MhL+DywGTXGS9BOOfsHoEoWizOdEkZzuYSfkUpOZrapKK4n30y+daPyzWsjYZyO5T6Kk1npm34PdBlhpdqFuAmW/24Ns1lMGqUgcQmYWsHPilyTqh36fTHGtocpfpblgXcFGuNrtdonBD6tXH9fdJO1eB/5tdlLl+t9Sqqq5c1l24M5GCggUQLz1bnkMazqYPFImLZjJ7VZ7UTyAFPSRAMYOz3xwNU0AwZHfaRDU1WIBBY40lM+Z94oSaNYYy9hpoY/vgWioG10Y3ZYaW8+uRP3KNrAxybZG9rww1QKGzZkuw1LPnSVBl1IGbGBAlfB8hJK8zAkQcMSFWinWSDmLTs3dOc9T4fPJzsif1NEUMEjG7GsVW2SATdwRLFd2WzL5FYpf4xpOgkc3+PmYw8IF3aNjbnYBm8Y80bjEBcTnPi+DFAe8oft2ZY0AUjO8M5lCJZDmRmaBqcTIEl52uF6C6+SMSu0Awbx9v4AMEMD/03yXcUD6I3efT6Uwin/vwFL8Dma6FeqRYu5oi4HW7gbdTuJ2Iyv+pQBr91+qqHlD96e4q+FZE0NUPC+IY9bCvcfNHMNUflJaaeGT7eGZyLTDHWym4bhMiS6j685QnMwrUuu9bzbjAn0TWBoIZM6o+i3ZvS7ZXrk8sqRbcZU1vyCo3zSp4AOsuxdDQaxe+Q15UJn26fZCF3zM5LZBD7LYcMDX8sUVuYU12RnWk2BXoN1L9cuoX30uj/7CLgPoGaEhKLoZezdt5UT6L0+2fCFaZ8Up3t+Y2UJqm2qdfWKoOms8VFSfH0NBq1j4v0gFs+/dBlwiLJrjIMW0iAcAPDKc3D/TyjDHr8y8BQJkNsXizODczbevuwOFnQG/5kM8RZ9hZS+MTR++vQdGrR41FUi5oFtk8N6PM8fT9nVOGHvyS5Jm1NNW7L5f2XM/G6D0UAQ1nHpy6SB8WvT6+Tw8N9TIXz/PQA82w89FaXxl3PkCFntneKT6OVmgDtoIFaJ6FctANUs3ArmaWGoabUPSqTkkmodfdQdRpeatiKsm0Y3aSQg2gWBYDPqca4r7IDXalnabyB/NuA14T97+KDQrrVT/3JR9ewC7ZG2oTKzCWS0hE+k4kEnzbm/OV0JOqT3ioQj0bAwsqdDmpn2vCxdAHwtzyzMBakLs2bIPn/gNszOmIhM/HYl1f18U5bPN5cuoYAiF+qlOh2I6uQIKTWkBAPWjRvHRzfpvzrcxbBIi4Rs6M4s9b0BatxrfpISFQ9pilsRWribDlYumuIiRYwODfOQdgzcKSuVCCFAmJpuYPHXEB7uhZyMwN7qM21A2vXk8ApGdfU+lBEEGWspE7+NzQIUG7ILphijG6WjJpM6LJy3CWdjCmiuItbpky4VPlxxK4ItbLcqbpabIO2NGz4v7RbLbOr/nGQpNMuiyBXYgTNBBVU8h39qWOTIFCNXxUMvQ1NN9ptWW6UgTisgCTJajWQfsEdN+TQAfmJr5lnWYpmZT0zKQbtC1BJRWW4hFWYS5a3dvCmPrXXG14fg9HjmexBqAN0DyVg9+jLhGDrCpWPFG/8WG08b2Z5nWBJ4u0D/I9EetRais2R/iP9vf9TB3S0CaGb+QfCQvtRAhN1YjLzbapmnREDTQpnN6kSx7JzvZNLFyrMrcDE4b7hgiR8vk8j1rY/0Pn8f8gFnFP0yNM9BCxcP1PWYDkIzG5Qjbl1foCR6if/nO6oD3rPWqQ3ADFejnCzSQZPX6iPmclUk1iVgY6KyyKCxFHfO5G/JoneCT8rH1Vysyqm80L+XTIIM+gIxmd1QnuhJfDxijDUK3PGqlm936jVQArPJIqmQ/sAinvWoxCKvJKao630ut6FCW3QNchrR4c5pq6b96lQExHhkj61TTPBevSL3V1Mp6FMcuaf/P5wW52J3M7TFipX1l5Zu2zFTurbe2N9xYgXp8z96oX2paJj5yJitvQ/wkQs1ZAyoWvxjm5FYTwPDnoOId7F7usxa8gWsCG2idv8AEYFXyFedW+hS3W44GXlviVabs8N4XiAA1o9TCBaEcM+L7Uplsx9RN1xmnxoZtTtv/+ACBsqFOpjXnFFQTue1XUoFWUIWQ7NdHGM9NzK3nOJoX9+AFuS8m0iiKpOrBnvVLEteYiRF/KhSg7zyWBUFsZyL6feVILyMpQMIup5KvYr1ZYYLg8XgMhKbDT7BmRfrvXh8hqlBYlp8a5pQb/LArEwWAWw3p4QZwGIvLntA3hfs+LJh0puqqjYD+NmNC3JBGrqNecnbZ35nH/r6EJyIHgIIcjTyevfhB5xL0xqG/MDcTvcSgLkGrQbfuTZunuH46zQXKQWl4IUvIJDqZWrlrd3oZOo4r/beEtTQfUNyqLk9UsyMUvTGahhXtoizG2yPTo/+99nbt6IYComP9/NjRBCYC69Q4XHXXD26WvdnounjQNfYPeMPcDL5KdZoXzVGE5T9LwpLMZOiyATnL7FvV4EkcIb4M5P0ck2MtlDoeFeaQISDxQk8uBkPcD+YilsG85jzRm06cUHfLAiI9YrLm+RVdfQb6R2QICfK2N8cz8gj+KLxkmG7q0QvsDbeKTPPAHiilfRJ6XAnhigNLPDshp9IX7IklAV81SJQqH/CyIY4QqSR6W0j4w1FKcD2K8vXWH8u8FuhAbyKP5L5qJ5Ag3Bl21T5wm/MlVI2oykLjaWp4GHcmUBVxKfMeamYuCl9GqUZ3kGydV91Fx8g/p2UIVzx10h+xfSKdsKFFRwEInrd4lQ5xsTXZ6TWbiFaWh7MwwxphdIV9mPbLnB6vgfYGp8FSiHyaW7DkPVt5wf17Ve5WEt1Jfa7nDRf/TGGAIuuXTX5QIj7jSAdDexB0oLNukwrENK+ZOKxYRTMwOPxvNrP+cdq2RUFSlFl5hKNswMgP60jf7zunI8+pu0zsj6agBDKVBaWJdeE6i5fs7GhEd5VJGBpesCtKX584UgdAPwqtQnJ+qXLTpMJW/t0yOyiweaaZ3i2qlJxxZGuOM+d1SZCBveqOZwiYoSUaEVaXo6/0b7NeYDG5b/MYa27ZwPmg1rDz5+9TWrlrL0Nban4uppWx5/QHff3WyiF1AQ0cTpYm665a1zADTu/p1RnWLLn8Ei5cef9QyXgQKPEjPL5j+q+JTrRhCbmwUsgjL9/3u/8aiRCEv11nkvvDeiY8ShL6QflLTmLN0RSW5w4OE0IOej8RHT7YZ4/VMNRqVDbx+XAe/fsJImiXHgEIZJ11dDAcNVAT/gPkUZyxnMgLgwAOuwzgnTWkK0OqJJGo0rfbHEqw5pYUHY7iSx2vNueP7zJbijnCDnmhwghBzeSO1erx78e7+VV6lX05JIctRJ+z1bySJlTp2mctx8cfkf2FH0rwLSw2i3Q9H5JPBYh/tUQTDXwVeL2YO3ZDGm0MWQYwYpTOsapFilqzL5QIBqayDQsb3mdThf8ehrS1EZUep6ZuH5+OibMpNkF6rF/GTiTVWDgY6DjcmxVmYKf4ah498DCu7KdUpSpZQC3LdE4gMiEOakv+8rZLq1MO0r7n4ps7VCr7Ehcfx8xAsUfmVB2qoWfKGNkLnAc9b6lcJOfwh7XKDgYirLMQSLrPGNw/HyWIDmXA6a3Exok+xd66tjS2RXaceK2Lv543jswSUsqqhq/ytJQh0V6dRkovmvETL2OUGI+E5iCnULmJTqkwAz8T6ybD91M94vV2JjliLoWa7AjNnMBDi0lqvtPnJ4dCQMrrlJBTIEOFnVCotpUQ6AKnVvKU3H/1/IoFq1uBLRjqc5hQuQUcpluyFFOP5B3YnFK/y6dALIHTro/s+QD+DFBnCQJSeMyq66nBLmd2wDficu1GNnSLuzxtUSAKO7aDKVS9NRiqFam48ROjlWVW4uWYw+TxZDvl6hkCLdX0jcPsaZhvMgZH6YnwDwJvNWFUDjhlc5MPq2BgbUKuAi8HNxNf6SQH+84DpxvNXk0DVtPxqL2SXp2tTYe8rVhwdJw+XiP993hfMkwqwz86EDpfo8rKDIcufs7xGwnoQ9h2QnxOrAHMAkpHbS2Ca597Xr/VpYoc8hR6S/q9J4di87tzHfZ7LBBHT3XMcVKQP62IZGS3dQznuRCs5oPQJh37nKtmp9aNoVs/bavOxII8zz+wWf4eHxNlAawPgiBvCR9zetCGw1iLWWfX4hCtfK6QFw+VxMANH9jRE0E5oCzYMd98umgovei47ovZ7IDLw+VC0GRPjGb3UaBFWyczOeojwudS5g7EVRZoa+xggS1d59UpKDFSTO0G1UWkheFiImLxE6ON1zQtJBu8U19k0a9+BiuwKDdRiWDlxmhKnDrw9HqQXtTirZIpTcpqCh+88CcVF983y874hCL+2fmuInsq3UhEl6t1MHcsmBsi6Akp92GW2u/g6oWAOmctfhpxTKGICjB3sIUlWx01xJKrWCmJyMhP6iX7wWwfylm2A64Vg8q8vplMyInUk6yP1jQsjyZEa7rHGcOon4CktUBywzrMtlXdy4I4mrxV7PI7T7zploHHxSKLp5LktTQAie73AXQiKAmNosHPVIaSmXRsfwUobak6zxtADvxZyTMf+es2D1fXlSDBeDhBaCtQcWhZevGO7FWQoEQDrz3e0QabKn8eu0ZbwiCB12R5rWAqEwLTXaepoCAdP4edos6ZJdQEMakWDp4pJZuold9L1anuA9Y4Uq7PPkOsia1WLMCiM4KoYaZYQEdrMnUmnz+zg1w5wmhEnKkXHoo9NMCEv3/Hdn2Wnhg/MT16QhGT5/hk/xFkILu2ZRMuLP9BL2Z7QLZTupalPotHqk6O9aSe1HvsjT1oLDpOnqQ9JNJI7llyJ6RLpiGVIi7uD/1/GDiZpl/uKdhWCBGm6+yoJnIvZIO0U9OkMW6ZKggMFQYJxc92tYi4w5wa9Of8j6wbQ1LzG6Lr84h+NPgHbfQQxqd3fSRXWlO0lSWSQ+6ImZmEurXkGH3dElhfF1KJqL+q2XZFZrwFqMbnrG+bpZGbXlhrWk+YWUxgZ42LTRBlebbC6vyr5mFrfBuwEFYtNMX08zFhnws0HKTjRJYah+BGwvZSlBFic/ISsL6KphcFojjspLm4RB6WjnmX04k/luFYUfh0z364IMFvnH0bQTeaeYkS5W6+szpxTut9IZVSJ19JVFKOOSfawlx86KvETQCA2GhKMpyXn7xn/WdIcIiBYfmBCdidNsiL+qzrL3M+om4HrbmjRR+sPHu5Lu6z7dRfJ7dDHXy0aO+b7w3IvbHMo6xSHlIpgGRFfnLxiWg2vrZnRs4cyEPW9u30444I3GaDSxFfwxrj0EmF8vhc8NqP4ogOumr3EUXxBOuHgqhwV24o4bH5pp5dWTHQZTaao9kY2TrZ8/WzmOwwlE73pm+sLDpOwod8Uvp1Cm53TU+uqAZeEmfyWPpcEoR9LSGDoG5b/fiOrnyd3KkTlwQGNavQWWQtAonX1wT2VZTqGRHcB3Lrqk5cFybouZYafS+Do1PwShF9qT7jsiNvGm0/GmSBHPMX5WPJpbozOWY/pBW9UP5XVXTwMvZFIjOw9mqSHwoyhqlxehMndXzZETj5zvFUIKRsFAxOeooQ+r+RuG+2brnSW95kwvQPDW71ag3YpfXhgDlUaLKFkePYs7QjEm8aMOUjJ6BKkuRv/v7HksPjhzZqmpNhemfpzI+uZgs3wrIduLJiaepxluIQwjRDQ4+4HZT+7A9+RyFf6KUelCrAxcQtfuIE1IqcHOyNRIgHEGZsuIf1SJhQYqx5LbIizHw4I0QENLGE7f6z4rZ8tF/ZrhC63UmeXRFE/tmDre/rMSWAz+WqATzym13hMXIuVeCLVPzAM8Xf82mOAHG+ab4U+/2djLv4FVtpy9eILxuPFxZC/HGtH+/Byx2p6TDeZFQLS3USxofPwZrX87pFOcsMVqI4aCHD//yaabPR6CsR+N+JPGS64UT5RYT5HpdnmuZJ2BfGX5KaQa3BO+W2Ll2VHvQqmm8FylEOB89OGF5xPhfjI8QhMZb49W9arX+C62jH3V5Fz9pzvhSwJ/uYz4L28gwyeV4qsTRVLL/smIDEL9lTIMUSJ2/CL4VcNEjZovQnlum6szPTeu76eskGz3pFcrZbgQUkulHBfqdYjILDaV2fbrA5SQKARb0a4Jt780+cvN8ZWB50ODuSvhiEXvb4AIvq54FngZR1Rr1vUA0DAXPLN0PTGCC8+Rukc1vVy8J2wFeQArEBfaE/PDLKaJd2EnYpkGNWrtqJeFITwst/McjZiMxYFw9ccUfpGdLUi06KeyPERcJPH7VzdEpLNCXT+oygjImWAFwJT9EwnQm2UMAyrZ/exSLyD5RqC0gNQSSZLjwI8wepNM9re+GblFs0doMgaCKhiWzy/2Xt2kxV5uQcdbLib4d1J5L5DeYA78SadEzAa9p3BjXQTcO1i6UkF2tLt2IoK7XBYMPqUNvRTdW8D6Gj3iLx1Og/vVQcbDWgBBpZLdGbmOuI7fHDHLZdIxubY8cYSHoWzKi0uXdnqzgvQjdmv2fVD6YsSadxJQdw8JJk375wE8Lqe5ffXdzoll9P+fp+dtMjvmWSUrukTYFcv5ome/QIqynFdvhrGI85RsS520MDGU2eRuwtjW4LaCqwfpHs9XpWEAbfB56ErQ2fwBmfx/J3QMj0Mfrg7uhIUo8bVTpGlS3mT2GqqX7JfI/3HHePGYL/5yH7luobiDPxLXhDAVqzX3rz/97WAmZevZX5nRCuo+f7oEaRQ9NnMRDU/7gsdJoqVSN7dIXNqbZ4QP3QVUl+qvJlKeVXdmvFa00Bbf/HKpfzi6Pttd4mwygxYbXoFV8Fz1yhvUHSXD4kadBKoGcfsYkbRbB5v8YywO/ueigwH5h9iemxaDkUcCNFvRyuaTr6C/06Lo9Smi0u8oUTdbs+NKfvqnrcwKgNHA+DIYRzNSEB7Dnfpg5BYlGnCVq9b3qlhNVnU7CMlBA2exq1QbBCuec63C2aiXZmY/tCaiH+GHHAttNrCjf4XQIRrX/HgnWi0aOd8SyHsrStp6dYgSDFs5C2t+UDzwYI8BdRVTBmCIou2+Xo8epCylpBj/AS+NO+CWSzFsZQ33VY6tb4aNWybb/IB57MbcANsvM4Awe8zLcIvbnykQm/FBKBEcIr9JkR1bmNh9HxTA4cKW1MOJY8t1UvIK5q/dcZzzh3+o2FK9+e3kLO5s9NORi2E3CZsmbDDUG36dAEiNg1tx1PzbfO7f4IaKnCaNf7KA/WBJ32ezTLpxtFP0ncZfqB1h2YUQQ/21PLg/WWgvfduKjQyjOL51+cQlD/xTlQhprpnNhpn7VcxkUesnxTxgxvfQkvbsEeq8bnq/tsPjnlQX7mnH0X9UR/CbgcHEx/Ui1O1Uqi9PUmMckcKJLeuEuD9NqcCrS6X7zwRpv2JW5Vz0z2Yjn4I0rqQymoKfK0YszmIqYlQn1ImO9MbPncvGohwGtZEu0tFNxM87l/1BOwxy00rUYyYTNPUqCAiyUCJI+sQz8Aej8Vi+sa2CIQDdwtP8mFfV5QpDOSb4Y5SC/ggqPpIsWmuHgdg8ETmw8+vQc+KE61L7vKcmf1oSRi20GoQug77mjXq1aJEhC78N7RuyRmj4he8qqM35qaFcoipwW+1WzW2ZX7zR4dzja3IIxkJz87cwf8Dlc39emXenjMq7mBmqwGVcgX3G/M+H6N+L90BF9CeVDXqKnzCbPryXekpLIDsrlWU5WpkRfpr8lFWyETpVxW34drCASo0BSJ8b87+v9WSDjEt/TCSAl/ErrM6eRHCpnsG/cSa/L8C7A0S7kcfpN5KNuZGqfUlFYuoci8NbILhZi6iTq2cBhImxKhelWFvs//OknMwh8QW5BIByNyxS5mALtyVfuj/yeJ5UQXVeIjD/FWmjdzAz4ao2caIiSR9Wnh2kqv2NdUmto2zgytlgpyYlXGPwTDmfpQe/Z6cQTF6HHVE3PwQUlC77zcSCgBwAmkwE/UjR4MtwQKLhT/+mSP/FGUMByvPVhpF8ioIy1p94tgHUDa+v4olozki7kutjIGKNtv4lkkMGsWOnHUV5/f562489PbzUAnL3/yssnMpTClsbVTogctbMYdE2rGB+4HpCKD3KqUL85OoJDU9S6xSELUt2TCEmMCr0jdQBmIhi9DpbkAzeaWwQG6/k+fpLHWPmH+7ViG+zwm6o+b8o+LnKyG0hTZs9/eLTTreF39nqHuafvCQN0ClrPNiZHLaAI+OR3T4b50ErkuCfIIaN23SQjO2O/vCOjIYN46KBjxkySu7LADvsCgl+IEswAC6DzRyzvYfZ5MCKyHlsEFCgkymtCbB62jMZjMbzVIq3XzOP9z8Iy8jUs614u7EekTyy2jprJU4V0ksDDwr5JKDiHGG0tCAjgg0msOCz/8ehamjNb3R+P6L/hVxBM2RoR+YNKSlH2LIic3XvrzF930ri3F5QvV8GL+zOl7qAkNFitjvXNXNYQa7E6rZAZG5VMe2+TG0X4Z+P+uhvDl0vhrWMc76FNNjEMRrd4Zw6gFZP0OM7iDCZuJ/qe5LYT3t3LI4VXtwLNB3geuwE8/pQR618Wd1JYF9IZFjBsgR7kTLhNfeFi7Qh6XqdyMoCsm2KkkOVFFJ5JLdk0THDu7IQInlaEtx/2LCGgouGP2OMsAxEMb3XKBBybI+7i9MI6afob+Y/KknrL504sE4qQMIRXt7aelYtfW5LI6MMMJgojzwMJo3Kywr51WVuEoYxbNswU/9Xn5HY1uVDTRG6dDGfb1w2AO+iV8g06IL/fAfr8R13j7Hoq+Mut0f4tFweGkfTgfLNk7D9F7klkHzNXPT3XhUR/NKTm1pXF+B7NH73ONMJvbO22Gy80hO0dSgV+FsIB5Cr5IAqVHXSXKpRDO1oXXLMxCg4ZNhmH8H+qAB5bpsBHkwS9+zX42ByGCjDhUXIR5R2aAfJ5uz9Eqg8xKbP85e3bL+EAv3GP/UBY2So2r1RK/SyGzywnLUoj3g5aEuAStBdIDL10oxfVA5C01VLW8lklFC8P3L4RNT0nsqhsvTsXhtgoBx0AcCCrwRXxcvSOLhvV4sqLjVciBlmnGYHyaJE0Gwj4tnk8Lu8mi30S/otUFnXp6Ph1Lo/cmBvjAlrZz8cO+2Y+5PRC8UYf9Kl7BU6rWhCmyPgLlFyo0jQ6kBVG3XDinNQYx0JREj4SIqaEMde5DKe01BhHNgr7m9qhY7McHSj+rpucBLV5Mep6XCCJH+KTMoAyFWMpERRilt2njpdH2sMX0nIJdOQV1DYaln7W2hrLUgy3NoKTRhSvNCXESJXGZf1L2T8PcN8+JGv6nOkzwj0H+DAx2OkSP7+pMC4rz9cg/yniBVSvvK3NHRXrKlkskpUXbpEC3b3Gs1qw3hQ5d7BgOjKIHlxBOWLHU+wEvpsCUV0KCKdRKaot1oCD8FBfTOCibDGw5d94PcXR12qAQRtkwFqXHy+DRti2Um6l+uq3h/Dj4VeOpvP4/6i8mNxLeBjYGOlscZt7l3vHyzAjCfiwmMyIfZHqnSjosT1BlX2E3PKSeUqpvtOtCpryWvmTA36O2kRc1NayBjlK9g/+EO0jpInkt6URptTLrtgqTxT1kQHFuJ/6MWU2KFlRJaqRP4ut4k1QCZqVUHZRAGJ2bgj4EPHnCgdkvisG3uuhm6jAeUwVDPZfEiEFxURoBGsGjip9PP/FpBooH+BImO/eEfyGsI47EHjcAtVzpcYg3LtQFB5UTibdrF8qw7wnHU+d0xwnf81p0D+ngef2XtBIsp4WTZU9LB9thYtvO1GwtOFozzsPWRjmGLhhQSvtudhk70v7XCXbjl3LfpioSXgE3PAP5T2cZVXjFsyv2ouhSfMQiVDRbIVQoySl8ynWZGB4AqO7ZpqD1JZNWoJSCDunjPAVQ+9mg77ylWc5AOjuBpQcB/ms7nxDSgf/OB6WZKR4g5W8bxxd45YE44YBqk3o6xlw/6VTAIM/nuO8+BZLIqAQWw55JJrpxmV0aqaInrxgNnEzJXJeVbupYdk3FNNEQX2FXWG4cT8yeFJxAGAG06E3HETh/qBLsEg5qXHpN9YSZlROF6pvPeGzeIlE8Pt4uloYzl2b3MJ2tjsOPXyn9g+/9JsTHHnspTWCEWGDiIZJ2gamnnzn88JQFAjQM2/7cDVaG2eCOC/3nxec4rmIPcLB9ixGVW1fPXtAi+/O//RNKC/5XFCjinPq9T+b5FChQIO7in5SlzR3I9kdS74zVbYc9CSA8r/FyhCy//GmhstQT4gU35vyyXc3oNAdRGgHmN+CTiPHOCRd5Z5TxHV6/0TxIAqy8FLfvm6R6JcnR2cKfVNBKgG2TWHyagTn1fCj+ssMgSSZv/TrjXIyGItrW2D3/PDAnatoJhLcRT0uuldZq1xYei/XOeDCGsVp3ssuDAuQLiVGkSzChmnAWmlZ57qPl8968gcww2byaCRi5LMMruLGGlalCtSuGgs/kr+c78eaH8Dqx3xcLr4AgF+sMl4QF7aiXD07ssqeXtZLsmUKuUIAeUz8nZeqtn4xkn0o03ZdACQ1PNt2z2vFdn841XmgLh4mz57Ie1hl0Nd2NrwvnhfpLAArKXFOzYMuZLXElwXOMMUcHC0xXCTnEFuIcTFNfW5wAVCTy1Pww0FDwL1ASv2EyxEoDEXRgnvsh7ixwfs/bFxAIxfZKplhUs/BuyVFtdl/RuQbT9LFzNZtyGMtJlFNj2I6bcD3jCHw7ze03N/nnOI8FmoIZ9UC9G0CPc1lWxrSauj4nKaWSSp308sK2UnowUh7FT4b7zRrWaXCbM33WCgKtKb4vX7g8sp7ojPzTk45BC/1RCy8Mb63QcpK6fSezzFxEA2YvcYv55QdYubeCq5SGPPEIRU4qCUhYH1Jxx5o0MBd996CaJn9eNkL+oAGg3tdn4CWYGjbjarBi7D/z2BvnsVLcK/mWfRmWEZz52bKdbNkrCP0MuebaiWd37evM37i+dKGm0H7Uq2cjXr2B6qzYc5gW95epeKm252EHN+9sAO307UT1upGRLQT5nEpwUztVi7wMzkqkwqjtwAOhar2bXnXsDCyHdHeoQLrzrRxtxVi6JyPbjVhBkH3tKSZa348n3xPVeydKZeEKuGnSLWsk6Iv7sz2yQYKlKtZnbAdjs0rxsyk6YTDz4vcQyesj+nEM4XeNxNRFUJ93QufVmFxN4tzpryE5SlE4w1z3gDwnun2OYhOyGy708tk8jMoqtBIN/+8oUUDVc3nJA7xjuhHa32OY/fc7CWI3lq06Ia6z88nVb3nmLohURNpuUp8Naeq72zZ2Z0wcHo52hN7DJB1iTCcdPYcBPCG7NxlW5UmGRWz527z34hVJ3LVv6IP6uDzAQw4m7eo72v47IJZXDFhJSF5NfT6BqFZ6cT5eTYpu3f7g9Wxo3cvyjBB3LINU31iJtLYwm2mA1NiDCXjqodApVNjg+gA7AeIHJzQcVJj0XtbOcfWUS7RM2d0pcA/lmkPerfY2fA0MIwOl7Xr9bwBX7SM0D3qUYijNv5x728k61CzQFY1ZgpajSjQ4EesRCslwMGBI9KoHh0u3Y2vwsX9aGV/iu8ILEXrXs6FtsBm9YPRqgkd8CUWwmCPKviKUlzoQ5uNoaACrDY1xGpSZxbfjvzv0Xm6FR+xomaz6bh2iQbvdHWZzL/gmqYUVfyiw0YToGzFYwA2e+6Y1z79d3PT1Kvjh1xWED4d3P/c6mANNUF2hw5k+RFdlQNZy6Uvuuhh/CT0z5+PMKUxMC2JeoBVjfud080cgnJkTP7dzvAWvaZ0L7q+gvtt0yLKjmZw+TcszZuei02RK4cAynvp4PZ6DpQ6iHuTe4X7JXkl96ETZVnOFALd9KU+/NPQ00iSm6Xq599yx1MjoFrQaz2nse8ilHAspNuTjPGfJ6VDUxgVySAWP/OSRgZoMyCuI/s9vaVvtmn+xIcfuV1k9G1VLHypcUC0ZyqVMUajopDEQYB4c8ujqcYI9+juQInjnIbZrGnn09GA43ZEcywoKqycbxSP3wz7711K1wAHh2VQpJ7FSpHSIPZByskkCnOKWVagjnxAldW6tRebXfGAUCpjmPNYRKjkoLQe9GXuYodSbnKPAwNdPTJPeFShnL5xe9gS8h3wc0rrXRqwiLGfgn5UZjtuuOAsa4GSxxC+xp+MenVvAZgd+8e1uwUQLaHucgomN14KkBtzS/3qQI8Y7yG05u3iMir69pn4JlY7+V6kZ1U9aYYXQmXnMG4oS4OtB2W+TkwP5KthRg8ZQ1kBAqSX1Pwpu/8x+Glpa3H2FRHGAC4y+Aq7yDd+UvpDUTF6ZTRMKyI7qNHDswVVTsP5q8h2Fiqeqi/nPfe7M+iYxAhKfTDXoBwlrQav/KrLrS7oYcub3qLCiaRQWKauRYArJLf0PFGL2slsdUoOLM7AD0LTK32XilK7/i7Rj6W5HTuHpdj+TpWMZubjlffknbKytroH4ktvKmNDsHym9+ZrEtt73hJfTU87NKcaxweWkdhzUXNO2t6lOPBbX/x5OX15X4smXGY/aL850cfoWOtd5yMSrc8wmcNZ34OHjUdiSUbvdSxEAzmorn/K/3EV1wW14rSj6hM0fViSFcLpU1SVlTp/75okuMfwFNmg0PTHCEUirx772uV6zcr6PlB5YxSitVOatbFqqjrgSyeJBCzSifUbIKFwN3EHJGL6sO5YjX+fGwpq/H4HsstqJfRsg5gwBaSmiwloJ20Yb7W3aAJYemINNKVfQMyQtvImXtgfhP9YuYI9nuL5dipGFYjjNQJz71AOXeDaGzucL6EQiY4LVotjxrxf3t7RdE7yWx0sG6EVOfjOEQ24FnOcEMhD7XtwuMhsDAupWOn8Xkw9bWeeu/zCw1ikhyY1u1VyVJ5ZWpT0iPhTZOT9ykF5zM1sfONTkIJaEjcmTxigXfSWd/byYU0xDFomlfpnYIgI1jeJIr1ozW3juyxWyLKF50O4Q0CREj+nIUS4Xz9JNH9Ex0Wlfv1zWUcJ7dgYIT66XMmBgFlIeui/VjNN5rVFPIKTYG1GzMGVo8AVq4GGC8GLJPPWR9w+7oqza+sCdbA/e7t57YacQz/dgdnTtJ8t6kzZvw08xgJBv1SzhJklboPMey7QIefknTx1yhyrCnY/TVTH5HcPBTd19aaQGtFcElHQuhP7+7rsYQ28es4Uqq1WXdf0D5ILFWGsIXJ16fQVqBAc8RDBhKBAhY/AGULz9baNsNv1yt8nH3SMPPT1yYnmDpX1pVOO2zDCKZ+eTW4lUZN3lCwCvdGVv0yiEZ2r7dRzHqpHpOaULq9WLqxV9q38IW6piHZ6LbC1Vn9M60ECxUxi9X8odjgGIUIE0knsTjICgD++f3/UZ6GzLaCPSGoup5G4N8/CQ1yUU0FpY8Ee4WyspqCCmDOk+fLK2KQaiVtluKfhGhXl7H0i1fNUjAX/OISptFwFu9EA6SaxABgRN0yOwhlunj/+gbUAYJvUZzzlF0haJdpvH2rNkZWhHjgxR2CjzpQO8U+kGZVy3pP2WD794bT0A/VKH9cimVa+pFF4IbQ1AXY06KWGjx13xRvN1J+2grHl+cYR0sxYLx5WCfu/bCGrJe+T0vVKNq8LCLZvTQDGLMXN6yMYcnlZ4Irgo4wJ9bm/sqlNy14hKyL+IOLjfFBLlJ5PduL3ARJmjRXfGX03QDr9nrZ4Sn+5iHI11WY/ExyaKJ6Sj7kA9R+q1LcEz8MvSm0/9+bC8KdXZfDYKa2GWPc+bguUH15GEhSC09Pf1gEfXLgdlfKxiQEzrVfsclwYpDhxCik2CZo1IJvFO5haYHzEm9Bpr+LKJvXHDJO0CGxN1zBzg62xhmSkM4M83e1dIg3gyKADWGy5NX0oVQGUCzZJQIKoNdLDSSmWLXPKz3Uz3nEhY/H63b94B5ygGiKBVRTWQ5Hj9WL8+tS6OmWB4D6NPlfQYfHLQUfCxgeDjg06hmsQfJPvMiJhpTQODY3tSt2qSKKwAWTmTV+uDQKiZKj3Nr6aUl6moyIB9JHPi+vjdHhbC5zlt84iBOBzLUurVnDLm9HbjPYPyTZql+Uq3TfVI51D0JA+jLhY5W+wxh+5z8A73ODJGO23WVA8h5u8h/frBSqt5z7QWNEwSNwcGxTMfarlXWGdOJw/ZEmBNIbcIjBzzzToMfjCJKhzQkvDF2LCySc2ugPzSZCMnuUUCr8hbJ6vl8sT4P57uaJCVqLfOZFef4N5ratZoFCVGo6NluHFf5pEHTzvgIPJW9Ps8ENlJJJH1ITIbmJqw5pWSX8MPIZkb7AzWM8xOxRihC2uBZTxMdWXiI1f2mGHXsaWdFDQeXFmU4N/swA+rgvGDQoalqBH5WqeLZ1Yt2gpzFr1j7WS0ShGLGfRFLuoqQWQ+Pu7uUkKoncwHOwCWmZ/yuobkfR84JezTgBHJwywarzGsSrCDs0xTyjmlEUaoKE1GbXw6c5hGZCBHj+1bKHdbQ+IVP23TkPUpB43qMawc5PjgPWYJpBo5AM68O/OMMU57E+dWDWPhtRmhpgFLoib/lJIg6MGcv9X5EdjI74O7JPVbDNe4Tb8WFzN4CW1hyxyclixFD7affXP8CaX3iab7PopgXbb6y1uNU28rW0uWCh//TK1OE/gulzvEY8Ku8sk+SN3RbocRYErELbr15UhLpUwz4xx29MVYrWSubHAPNQt/ZGVS33RVAKX2e5h3lcIYryy7nWHACerZGNB65Qmq7Rv2LEIyDygUZ9IiFhF2rSD6V+QV3bCJjNNTI7C9hueyYhK7mLsWfyIxJ1wMlldU9MXmYztNnZUnKRD6qpXiFIMzdcRCirjDfx5e8QeHv5JCMWIkei7/BvD3JPY/VIi1zvF2VKBQNRGE9iX4QPnoGIIREfapLvholsSq3arCcoVRiFfykswzm4va/weoeUFU5oXR/VGmz6vwqqliEU4yiNWqYk9zlycCuM4ABTHgFb1Ka1v8u5/P1IQOmVa6eilCwR32ojmY3XOYU8ro6Fj4yXOM1KWJYeQSL8of293A2ufVIKzM9POzLuns7nvob409ngigc0JOvVj6lBvZRkISc/UQ3wVSLA2wVLjg7AQhc71o57B4L3ZO3VYHcAScGkhA7H39kzTyYrQQbRhiPdwjpd1aSzPhs2kyrMNgZyFIIIYBkLGYd3f+ioRI2aWfToUscXQ/xW1Q03KdqJX18tAMRpu6eVZUr0e4K7UFanotnMp6liSvEo0gH0pqLtn0drgMH64JitVWmirwZOoALI/Gwrkg3TRV+t40DqEyxc5E5nSX4wKNZWInNdClg4tkxu77w8AyMb2qB9VKXu9OcUADiBm+AoONA7s1jZ4KvRhqlbV8DgmW+fo+XR+DZbhYByM+n+6TBHOMuFZGz9k5pY5HE8ZC3rT5RFOa9caknjZ5/teyWpo00iKYlMdDe5R4tQ2fS18695c5/BO6jLw4uSrXA6vNr3NObUu+KfUyow0lk2aou5iGRL7qPdO1b5QDD+kGMiZ0wWypVibvJp2brV+FVeEd9VyIV7nq3hCCPbAGW9MlKfh1SeXJigX9Re65mofL5hTnwNl9axRJp+He4/BdIPniYcr1MBL3ODh3EyBJcOMST4WygTJE5kkPPESrks80biHmmV0IgSQxfCubhFfT65OMorn1AmX6FmyX+QPnLDCffnxeTOSMPRJ2WVDoOYMraLUpPPby+5G8xuPIqkdJmbDeynQk9Ns9FJy+67I4pktqk+ALeLzONJh8efReu5b/r5/QTTtrwZbmyxnrK/uqNzpqp7xmlHzKOF+VyeBkECM23gIPbcWriHBX4lOzh07JXdlf37FF0qyk1P9hhFjhbNhj4gd8/eJkDw8fIhEYnXxVHLiUYMSNwJBb6L0z24iuXa3Sqt7B4F0/2/L9eSFCrRPMrmlFHJDWn/F1cW3ga4j0h210DgDj5jZIP62UYW3IrS3Sz45cbFpNkM0m9cyQQZvJNHEwJUDJpr22S6Wk89d+Qi3o3IY82pSGDDCcPFHXNaAH0yRjZnv2EGcWuWOVt45LZQ2clbdUiTbAYQ80RL84Q1xyOmu72YaPEexEWZOYAJ94W/hfXX8cnqLOnpzuKHGNlXhQIG+btryOOhvJDsnLeWRB3yWDBcDBKou9JW4HnCvp9GaaC9yR0PuyCHG3OupZRBDhheTGBzuzAzX0GQ/y4BM3mZL2f35d4XjjyVFQMG9BJbVLD4KKSwaTI2sVEZp06CiccCfCfE1E3VM5RAk8sOy604U/Eg2Y/f6tMiAh25L1HZYlB7oaTzb2WCt9tgFZGOAUVJrh1xT5QlzSNkB426L3ngpwEmCGfE6RML27nKMQw5WHOf03PPD8ooPbEemSlqN+A9WkamugVeFBfkVo2XQopPTqGOJKjXr8MlmQEgdEXfVeoEw774K/SX5veK1hrg9YCLyt4kk0jZ2BTFtFOUVh5qR0hrelQkUra0Qf98kquElXlofux+JOAhy40ke86sZ0vNbyPLckju8Of+PB5/Zo6Wrue4TlsewGZyiyNOQ471WPjSl1coZbmT3S4SXms+SqsuShDBxIx/FcYonBFRymhMbiwp2AcuGWTW6oUiPYoSy3J27Faam9fh/UQZSlY/6/D/zsFdZ/vv5fwfFQ+cgTnf8sjSlJ8HkJuqWQKxEv1eBu/XrMp7kUZQr+hfOB0lAOSTAi7qFJLeijrDUQ9B/SA+VamesU8Aquf5Pud1/XWraXDngyhUlBQExG0wlC0R/Y4rhBTHnVe2Qc0ZaM0c8rMh5kt/ryURJTBfDN3umpdmZURkhuVQPlUmeD99BVG4O99RJaVE3DYHHT0bpHFgpQ+WayoKuHPwiDlgiERDaVI18oHrjN7Be/RcBrX4pEGSWQQ1tHRFQmbwf7ABcx2X3qwA+2OWvd0TE94BDqlLRysEUTLTI7Ev6YWab+dHhnbkTvgjQe3Wu8IyDy+/QiDkI0/5+0pufJZ6GB7vIy7L0QucsNeuOuTmVNRFRsSKkVrmrbNwiMTnIphvhT5avHQooW36EDR0hs+CpXQihXDOXLfUFg8i2g8YF2IYJ2z53wHpG0Z3zaKJphUr5WQcEK3ASexx493MhVGs8HPf6eyYjYL2OTtCigmL4DT+sO8pAFefxsZ3e/vMN0R4ygL/6X0m7EMo9qnSf0MQSWH4pLrT4XQuPzW1MFkDKR2wUt0dlePChnZ425sfrO4IuVSvjeqUtC4TyGVPwX7fKhqxajXmf6E8N+1kUgV/cmrs4MlwlE7hMkAZkJNp8oSmq5U8lxdASl40sL/4VtUUnvaV8ijlPxwDGSZNNsPgTZCZEWQAgS2Z4fhRiWDdrVCKDoVTBfFHRL1PEUIv2QR6WpL1YFj7JuPX/iLoPulSAA3+H+5BZm6cnosjl/Y6s5gZpoMu+iON+XneVyxyuzlj1th92f++IdTqn7W7oVmsmy/D4qdnE3mHOi8N9EQixpSPFsPlLKwqZ3LhBv0mCSl0ZkL4W9NW7gDPmPU5DcOSlS1TBMT0Q/dpdxQn/+dRrVHHwLPUNvBrYw0knwTpInQP7DVFo6NnG105MuFnb2cYVat+/MpnGT+blc/NHqY0ItssWrrgMh+9FAfaUOV5fKgxBAi4WvvHDOxvjfulOoK2ewCw5cTNr433HtSiAMuqi4hTalP2Ec6BfTNWvqyEyrEFtPW3UApV7rX2vrSBZVusByRhQiFjAQOTjryIpgyOmhTb6YbI+56SEimsLg8UHafyfU2ag1zpKNIPTfJMQyBUe7i7Jz0Ean+kjsTPPpFoYgIwiEPkPYNpT3tD3xKG4oGOfRF7sjKkDBpr4MxEjNAilqB549RQA0vA0gVbWlEyHpGKwatjuUZpF2XoSHe33YiqqwLdYG1O4SXgQJ7nQFdMFqsRpBVpnZSFNYaVCWgjGuOetyDv01nmiA74evbxux862DilNB5IT89H2aiAZiRJJvdxM8DH1s0AMNIriBGC2W4evOlcLqJynEwtAm/g9hI1UNJMySeNekDeYSCcxDjQjfS254wBe2WVp7eVyRIYd3rbYka3lZ4k69n4HQsEofKvbyx0Mzim8FbQLLoiqk7t3QTTyaZ7c/s7ACsmZI03EBBcb+/9g8RRIaIEJJtNZmp53dpAia5tobEp950A1GDhP/UdsoaVsUrps2gXegmBDuvtEnTEAjW3RuxnvrOzzxvJJVETJWrhlrKBsiweHCUcunrYbQ6qIX/FbeyzkLfgjxympXk5UmdrYoPBShYj6v1xge3HDGRrWcAq7rFyV2MC4JJtbT+f2fmeYkGmsYDAkG2qLaoK3AFSIodxh1HYuyKzfqUThA9vcZUH/0dOEvL3NXR9Yyl6tXl7m8lrdGPe0h89TBbbFhfG3sipymdc3EbsMYQ8Y6XdkAfM0q9p4P+2JOaMMTLEHWYbCaQWHEjJPfaAvrHf3O3wqo5x4euotCroPsZ4LByi/Yx2b6U4RY6b4PAmFCxmnvpJriJ53sbXuFXYNH2pyN0j7myHMfLratSR2EZsREEYhbFNrxBjAGt60YmBqnjCdAh18rVoEqPxFK7keQucDLMqtK7quNdFA7RzBjKzy7PsILpn/2Et+ya4GzwLJ4mk8jXczen33SyWf3F5hRJuxZuoJkahGnRuIQoOnkayQLqNRwDzEP8wsHhNY7+Ah11qiuKpPZBtIiLvzU2XEI/aKFkNpKtxFyn6wg4dOVzQL92FIsqYDlUZ1GYMES0tD0QR0fiQ4+tZKLV7Lev5z+sn1nikzu9YlYY0hBPRccys9HJbQRBqDZH6DNL2ZSBD/kXW4VpfVV1iuyT3g3ssih+OKQ9iQ7L5XiQ9ACl6LEbrWTYmwewdaW9j3UNaYgmoFsd4abooE026ze6NrFvunZnrGTl7XOQW+k7FJC6JaG7BR7BIR+rk/l+/M7V39q7ArOiwzSoh/YrUdgrEw5OsgN4sAnvslPNxOjDNoqVxkKXbcX9HTQjpuZwWa5wE5FpDkxd4WLAjxhqpAB2XsfUZtuFJSPS6m2eGYKW2MBeL1S2QriBzBNVduocP2c2i06qOR9YA2hg5QCXmHYDCQNBfhdcLsSfTQcNxc9HkeINOeUkGO6R+1Rj0MD+4yCUDOQpdDkLqsVKV9pcmUH+yJW7UtCgObEyrp7YhzVehbL4vudDL+Z399UQ+Dd/fYrC/OcnzHvleDJLOREAZiy6QsAxLaL5zWo8fPcIDTl3c8OiWWIcfb4PtuHl4DQRvcn0lDHqTuhxRpYhFQqVxjPelUOZYG93yLhumdHcv51jHGkMm+9fK4bVbhXe+ioS1ZGn1CFBSIMMm9T6bDSHZoyATyuv9uQ6/ic5J89YI2lvkmlU3kaBzQlZGpbmkAjxOxAL05CsmcAk/gtZRMV6Uiip3l+In0zn0Wy/ZSJKsYiLMnpkFCOtGpVdJqDSM7vRNwaF+Xv82moF6AmqBZ+MyLR7JtTye743b81W8v3lSkuJKao2yxhS+vvO9GgNztkEXgT6t9xzFeQtq+N1S3om2M9W78VePuRNR5zg5LkvigAaPzGIqQnPzOOUGss0/s/vdD2VlRmOi54hbWBg1rkW/GzgpmC+5+uBr/NLnvJTw149SL2HEZePP4Z4a1r54RIeXdFIlTyzpNfEhkx1jbldj2az02iURgwJctZGAfgHJaS5r+90yV/75DF/qIOg70L5+SU/Y9CGqqCiHW05a5sFIM/HjiZra+wngpJbI34U2WhsSl/BM6kYHi//25YYJE3Pcdo4lvWHmiEulwT8ToESNHrGWGwDIGn08USTEQNg8+PO7OJB5oeN8w921PX1HaL5GCqkrfOFJVAYpjBw91pYE7y0UehV8jyCrpO+3Uh2GGP7cd+VGFSNPbZyEbTbMFU/6UGCv0WEyvlnz+XpqMgPGI71mNFciOjrpDjV4MKjQZjE+k+94u2ui8S1qG3uxiprgpZorQhrQ6XMJ8rDhm4bm663f69mD2CLhXH5DuEHSfXs2rZUazdHfe5MhlElbdcNUz+U4j+Hw1XHHc5oJ+VLgDeWHLhrxeDukCyqRH2u1vy468TD6XTxmM1PwyvvBo9BLuQXK1IF+bI15MEiUUkVb6gS4MZDOfxOBN8wNL7Hl2TZWX7swmq8uVq/coZdpVQFjq5yhUdz+VyXTmnt0mmAMgjOTZjDk92WOLswDHlFys4IPzwOXOUsmAitBVFIV+Cq4/wUaGANEWIbPey2Z/LfWJqVb5izJ2/I8j2WzCtTg48AcE05ZMtce/D4pEBc+uATSoRgxpimqxwxpfkee8DiLgGIGlkuXFNslN7ZmP8yhes9bdzbJLnYWFa/RZ90/xF3MUQb+uBpb3cOOQMojAYD7Ci29fvlARYocDHWQJvYLUyjFfwX8XBReMAVQmN8Mh+yNiZtvx6LWtSVvxil7g61q2P/njjP44Wu+G2qBlsNBSklUZGPaC6FJcmkVsx4uSUg9/PztknNLRqhh8XdZv1WyLq4xUwkAF2gKy4/I+EAo3tdmyTUcLFlHmt6o1zBzLcK/VHf6mUtiV27YXLx4pRStZzKMGta7pUjagG5iptCmDxTbNrge9ZWzTERz9ErvsAyG3NNENNxbWGqiCMP3wk3zeOLGCDbaOoFabTdyX/A4pzt66UKBkoqnMEpafjyp7RqLnIq9dyEe/cT6vPxiLtuWegQOIHdCpo8kYk70jq1c/zEZl9w+1mGBYPbCVPdYD5xMv4QIc5ocBxrO7WzLJitBP3T/5LFXNp9PoLDXF7ho4i66kW5XHtkUjB7Qmm05QTA86Haqi5eRvIy0XPQqis5DXhC/3V/nWCMrofagtvYWDoSKlkygp/ogq04Um57UVuhTv+L9gRwVtrTnrvPkw8/soUH+iCgOClmZWcgFm48mvOCRIFolQlh1/YCqpznqwcnZrki8C0CQNbamAboUl0O6Zo0ggenUZHLIptxKdsQGm9ahk/NKMw6Ene/m34bT/jYsN8KJdkwDxFRsO7tQ7cuA76Mfd5yEQYCpn3IPPlzC3VzGgzEMOSyuazyFJLUH4VpM1cJYUJX1ONWIqVY353FGyp9DEakV1TO4Z3XOXFXgwUHNXJJnoxyB0uZ1FcehMjzFq0pi2e3yLupByuugDhcgbTP39Ps9Q7hyUsaNKLsFCbKDD0/A+zVrEIIR+2KdwaUIC5/RmFUDOezE8FBkc2/1mQunshBgIKxrM5AirdP6SYQ5NK2d6Te/fFM109OFTfcWwpnyr4PYtXko0fVlK9zcnQ0wDjRlQksVRq0YDcr5mEbyOHTybGwMCj4lTOpgOZnefQM4aLy+WYhJs7YkRDfW+92cp0ELBaQewDg6jTMV1cmHNaYX1X9+rK2SkazcGncNNLzkhKR78xNak7Win9aK97lPgQYax3MuBZtsxfKlmbUQfmMaPQUnW232SZ3kyejhTMvBsBKgWBYEHA8X7XUAyVqXNZn6IP9s1q4rBCJFnv67gy+BYKOxBDAPhTUqUgpZu+Cn9ab2IdQXHmc+S+6DVhSknKxYaenPABwJE861ugaRSzCioiCUEBBoYm/Qcc24+A6Bgl+Lwv1IpNz6/9ONssL7cvyvbPPkO1t4WWaEeMvQ4Jyk9rO8Clbiv4X4VuU6em87Swq8Iwi1CNA5PAtwuvf/PfrLbo4R/yFhIOjvD82I3zxvZnAOr2zI5ywsxeY83J3N9jjPMr7HUyGvyKx3PCXbROcqhp+6o1WnhrONBmqYaypqqXEG9WLdLC4xoiMizHvCEUnkV/eaQ/VYqpo40NwRyz5+HZJvquQMh8IQUUYiwA8CVestZpNokByETyI/Id+BBBf7GydLYFnWsI4sDHOW/wj1xh4SXgtx3IZgN8UZybgVuBB/+3YqsmJ3Ucl3bpic25xv2037VLpK2zZ9jayQD3WodLBtBxrj8e9lFl0RMxhyozyS0Mg40N/sbh0SRfQXwtSKZsqM1pFdTSOV/ePuNFbfCsHc8yYvOLvodI1+8wNVgwpGg2/lW4p5BvUi9H02CPtMV5YM7tdELaDKouCZUZmv621Hkba2ERh65MRlMFg0x0sIEBmQjkjHncaJ06DFbcNj78UYqWZYbi21Mpcc0/UwuIudlz2cd1ulDpaFUeCqKMQ90WEOShkRTC+5Fj9kb3vdhE2UE5skvVCLOljdril6NeC9tVGq7dZ6a/hLAcBsD/IJSHC9uVY0oQZF4zzOO1BqCOFsSbwWLZaFl7Vr5JX0RKG1D1W7DQuqV+VR8aVprzGXXIVPpB+bQy50gAMTPdPysfZQBrO4TfcUqNglw4ywAkKtO+9w440ORPX7QsTiriF1DNPOcnBYFV0Frt9fj43BttB2Df/AMRtrCZQ1RMZ9fHYek3jmxdoUXNfW3j9eIjEjCbv7171ubiM7lty7C0tn7nANxWdivi5QuoAPWVgl+Aw+L8tcH4nFCdhshea8G/1X0HMAxNh4Jlu9mAAPEVc5gehqh8hXuHtCLx3E+LamUA80KhGl8ozOs7OJQACvw2H8J3FN8+sq9my2t1g7gZVFYg4U2wYLR5v5KRgewBODXzd/xP/Qsuw4t+Fkh0FhNg0FEHy1vDWniI6DwdDOep2SJMIfcRDzY6pQ8TXKo0RQ4VFWkpIswHbgDazJ2xlvOwJ2e046SvEhSBQtoR9D3sgKD5lYfMi70xuMhq17aUCDacA+tg+dnOmGK5urgjydvmKqI/qeisJ+ee1qv10becGelRh2ZIZgfzU2cohNKR1G5BpWMWDBZQP2qWWNt4RPK7/t6OP1zwrszrVFDyC2gWchKgwlhPGEsiKyLFtcwELs4eDwyPmFe0rj2QXPa1HXNhlRfB7TumzFJ7o+QzqPKYMcnRyi1uPgQy3kaeQmnAklPcWOlcj3CnsAah0v0v8SIZw+Kd68kxgqciDtB9fp8NTiHmD16YaRZcExI9RKUhy6dF6E/I/5KUj6NjZI8Rd28/Vt6clnmfhPISLr2MYvVo2Ggc0zuuMPWNGdAZ0sWiS8xdGniNYNmJ7QVUZfbnoeoT+OS7qJKs74UXeKvio7OJEq/O3jJ4aCVK+Qi1wzYi/Xsdq0Y42pkoH2FTEyQPJ5R69pz0FR7qtf5t9BYuzcClvn5Bf7vCqJs0aIFowrPJmyHhY/y4GgDY4vlZ7axWqM1ZBVu+ZUQelXaD2kHbqNL8svhJWSvWtQzn071NNUqeyykKHgaGziI4Ly7xg6SXZJc6woXVw0YjCWuRHC/b/VQ2GkdzFbKg0e0q9Z05651mZbkIH01sfeL/RKexmcnkFc31pLvgLk8+Mahzu1MvEhVsJdCGDd2Ehh4jC3gMy4eLtial0i1BvstBtBKwo9NgTgzvANaCCDKZPqW7dagOPA9nDy2sWjFaVwEPPpsZLg0JyF5sU28PJdQO4mG3sQiivm2OTXHUkJDgU+CBnMVz/TAFPyOVctUkQ6Y9gS0jCJ7jAmCq7R2QqMqQw9HmMl3j2WI4b/PnuRFN0NC+eaqCrWnLscGBdN5gqDDX9md0gV2kZm+MI68PTk2nm97J7PyI5FtEx4F2T1BBcsDf9VGsYDDE554t9ihXm8hC5eIS60VlBmIu/UBOM5r5IahWne1yrgEGSqQvx1W5xQfiVif0zC6in0VGWWjpnx9Gp3JWTVrmZGZjtziJEdsEasH7OLe7RJDoPm0hzFx2kOqETCWZMSpArNzE0pxfOyf/RqNdeWElQN/nJsZFjzW4XLBjYR1HtX3p/ETzgR6TARLywxhlc8uFFhiY7je4O1A720fT+VQaNWk/S8B8D4QWwGVFfqm6sLBNAnLKV1HBBAq+owNjMpCqHZt+NGRcTMNDHHv94cVSDXNFxfYPLIEfs4ggZtd+SuXETwszTD31zvaPf8Iiw30jLOjyabyFARRx1VzZuCamM/cmw2olLG81PlBx4nCDPRz0/+cVTDH2f6rGdtOHasg3V4maqY7AJa/jkvUoV1QDNCkRR8ZS3kuoiMDu/O30HeJqVhMBUmIxbB+73Ejo+fHL01hGIZz3QV7qcd5c2wsAbm9dlN/qkJFvWizKxuz9N4ovnMlJs/I3ksgviCmwJ5IN1qD+DI0VwXse29mlBKeZJSQsUCtvhLmu1pF1+9/KpfD0Iftw8XFYTIkjc99fNbixxh3ouPlRmpC8EsgHeLPFLfegks4e+c13QsXC/WXXEWTI1JWGH/82RQzeohaZ6u8YhA0QDVu/PCBl0dtPfPSa+pHlO6O+dpbM7CtzQyEq8hs7VA27ZYCImJFmXqSf2V8+wmZjmyhv/Kv4FPvB1zN5Y1xP52wSpJs/8o07/PAWPhnNuZE8zJPfM1vf36SLbPg89KSWRacbORY1FJh+ScvjZyRIJWVMPfjGBIkM/ju4ZIxUtTaAZPb3o8hM4Qv9rZDCC444Z+KcHDSqxRpFbX+5hL6EOG23UxSfvCZZNSZxtUf98jesB6Yp8Ff5UCQ0apnJ3vG2Zfa1aO6JyaxeKqkaVk1kwv/IvjVKjg/IK6Sb8bMCWlFEwAZIg3rGd22y1SDYTocVq4d0Lii9o8Nr73mzT9DivGYLQ/bGbTC6XOFfNgaPB6EJ8IGQ3wajGt1e2D1N2tLFLpBSFMLbGeo5NLBYvKynYeyrvqo7c3SZNODbQb5/kzYWLhGKacYIdo19TpA5QK7V5dK1ToUIxjzaijhViLVCmIF9IPGxOeZOkPuqebGU70vUm+g1jJpsm7CzHOJjC3HS6e40i8WpW1EK0OkWAh28uj7CAcL1jnHhh0oNkdJBIOhRHK6sSASwY/Y5ezvIOc8Q/0rzGFChj5QKBag50rvShsYm7xWLnXh8jajXJkwHJTBBD4/ezuMnh7dwDfh3O/r7iNnIW9eo9/w5awkBvGNZXxjKCA6Crw9qzJ/krc9bW2AIsTE5YmwQ1BWD3lLmUKiFU2/xMEXl5SofVY8kQQrz1tM1UR7Nao5BHhWKNnmOr6tZpvLG9EkEb3fQ4zhqr11AEPoHFW2KCxP6f7PONGtwC9RqKC0JVWRb8Th9eormq08t1/1LWlSI+BoeMDI2tDtXEQLwPtOj/sh4rw0Z1wHqv0BchHYrZttHI4nCHOBcT7S1YTGn7P1HwPFUP5cXE7FQ+fTE4pL5/ksNcv1BDCk2bTRVZvKVhLsQ8Wj1YQCwIj+49NiBit38QGncFY50le/MMgFzFvSx9np8vTgspoOSz4ijmb3EDLTGHSwzTjh8jOhJnEK4kndL+RGbRuDomZp/O2Nnh1YpYpuc8EF0P9WPZteGmrvg2DdkvcBlQ/Z/YoHGji+9BGAdClFvlsHbJ69a8zTbvnk+a/0YEX0PBOaX8AZJpKvUGneIP/8leW4Y11F6twx7EESACIgdeKNuwQdfgzshaIdCJmWHSLJgBfxBKgcFVydhSzUPS2zfyJsLlw0zqjMViTYLR/4TY2ezkBkBW747mTCyP7dFPK8X9aPvY0lfxF0q9DTBiOPqf2l1wLLkGZ/Ha83GrHHZpjr55vQiO/289esHuW02BldtvdgmeRrfDfUBHAAeLSjQ+DHB+HkWpP/yNEjjjq4eIXqEXNuKt6UOC28Onlw3q13bURC/xIBVQe6l/T1gOQgnTclKaJkYmdxj4inqoRRhKzSPbYxCu7K1/IY30Ug5oQfn3PyKxj8zIg7W2r4Hf8NXsZ5nzWtbD4nd35FhlwO+BdDYrn2TS6Sy/5kFFbSvJ43MFw59VX7xFh1ftZN8suzVNrDBYuP35KQmrtMxOAXxJc5FvCifvuSEvQCfqcYaa0J/F0Jdo3eer6Y4+YblgfvF8EW5WUt0a6SyI3YOSumLhCut9fOagjWtGLTEpHaKoclkgxVbLoaSl+rwHq7V87+N4Iq2T3aqjjux/1HmCeGL3NLqH/hH7LtR5LCMCXRqQrojqXCQ7OB5PNFgz176xU3JasdnCVhVpJVwgoEj2h0C9UcKg1PM34aw3tFSure7cjqAQ3QNMhqk2f67c6rGItE26q3m8sz0cBxupI8i1mVn8Dt45tFaJq8LmS+sbnMBxSdsH7XGsft0sOIZU7OIyq2RLuCkaRw4SGnw4MriwhEi9WYIoOJUSdNzfypReM4MqcE1FRubMLu/B6Rld/TqDbrCrkGYjxsRPQtc8JrqSYifQRwBfLEqzq3KdykhmQ1y1ToB7TsYmtEsKm+miV08d5p2oRVWiKRYspJUhKcdlXVYn+dV24nMn2ZYDXAKGU1pDJ+glZIi5a96Alh4M5MP1OfEy0jPPJhFhRyjVzTA3qBwyxCzCAG5TP31i50+nHuc0QVY6eGeyTfCwLJirFT0HissJh7XOepHTyPxmZPtJ3v+y+1Rbx4er75FwoXFoendtXYz/dC3v4BY26lV4rKlCyNJxAtcQ= + + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwgAADsIBFShKgAAAAkVJREFUSEu1lc1rE0EYh19EREREtKgXPVgQD0aKaMSDEgML8R8IEcyh5GCh9mQQESEHc2ooNeBH22sFIUToyUMwHgQpIiipH/SitCezJ/EgUmIYn7c7C0uzm6w1PvBQ9p3p/PLOTDayhYP279AZwTdocA1P41CZrlarRmk2m2afyIeSyC47NhQWgwFH6WRB5MecyAKesXP+ifPJZHIjn88bx3HMuBcQ9CVBl+3cbTOKE3iBBcfmRWYeibSDQYQsb7ejY/gaO/gc96NwDrtZuEDQ10BQ97FI9YHIXp0Tl6V6vW7a7bYpl8t6k6a9sgdBO/nk4yzu+kE8r+FZO2Ugb/VwFT1snlex5xbN0hmLz2kXGkJnv+jmqh3uy1Q2mzXFYtGk02kNUF/gAR3cCos6+N3vhvO6ZYf6cgUr+Ar9kI+oX8Ie2J5R/BwIuWGHYnEH/ZBlDP3SsegIi6/YkC6BGTsUi9voh2hnodiQdRvybSZiW6N4ghrQxcj7T8g5Fu9oCGfD2ceH15K4qCENLUTB4vdtFx2+I0dsORaT6G/VSS2Ewcc+pNfWhty15VjswZ+oAfe0EAVb9UwD2Kb3thSbp6gB+psRCYsXNIBONv72df8QNeA3HtZCGI7I9YvM466aayKnbHkgY2AqlYoplUr9ujiRSCQ6Ok/dIfLO1gdyM5fLbb6nXNfVADWs/Ql/nsKzqrdwIJdSqZRpNBqmVqvpP6145R6SmUzGtFqtTXn+4pXjUUDdmiU8roUI9AfrE+qLMqGF/4zIH9Mu/d+3HXiwAAAAAElFTkSuQmCC + + d503a8aa-9d1a-49b3-af4f-15fc8ca068f5 + + T4fUA/K0cC3QWjo0THlaTA== + + Offset Variable + Offset Variable + true + + + + + SEEDstudio | www.studioseed.net + dga_3@hotmail.com + Daniel Abalde + www.studioseed.net + + + + + 5 + 136cd262-6d48-4ea6-a0c3-4555985ee4a7 + 4a01e956-0f0c-4fb0-81ed-ebda47c67c71 + a6ebcf17-257e-4646-8072-832bcef5f64a + aae36a7e-2197-4fdd-872a-b5491ba6162c + bb62dbd9-0b73-4fa3-9e35-c501055bd576 + 261eab82-69bd-4137-9d16-b788119e9933 + a8bf6877-fd31-4755-b4f0-71f4b92e8d05 + 866ed8a7-7f60-45b9-b36c-4904756b215f + 2d62955f-50ea-45d1-9d40-e52b3700f860 + 71a856c1-c6f6-4f47-9691-d3fd8d633906 + + + + + + 993 + 590 + 127 + 84 + + + 1076 + 632 + + + + + + 4 + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + cb95db89-6165-43b6-9c41-5702bc5bf137 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 1 + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + + + + + Curve to offset + true + aae36a7e-2197-4fdd-872a-b5491ba6162c + Curve + Curve + true + 715f6ab9-fbde-4be9-929d-c73fac2e4d22 + 1 + + + + + + 995 + 592 + 69 + 20 + + + 1029.5 + 602 + + + + + + + + Distance values + 4a01e956-0f0c-4fb0-81ed-ebda47c67c71 + Values + Values + true + 0 + + + + + + 995 + 612 + 69 + 20 + + + 1029.5 + 622 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Set true to offset on both sides + a6ebcf17-257e-4646-8072-832bcef5f64a + Both sides + Both sides + true + 0 + + + + + + 995 + 632 + 69 + 20 + + + 1029.5 + 642 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Bulge factor for connecting both sides (set a negative value to separate parts) + 136cd262-6d48-4ea6-a0c3-4555985ee4a7 + Bulge + Bulge + true + 0 + + + + + + 995 + 652 + 69 + 20 + + + 1029.5 + 662 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.5 + + + + + + + + + + + Resulting curve + bb62dbd9-0b73-4fa3-9e35-c501055bd576 + Curve + Curve + false + 0 + + + + + + 1088 + 592 + 30 + 80 + + + 1103 + 632 + + + + + + + + + + + + + + 424eb433-2b3a-4859-beaf-804d8af0afd7 + Control Points + + + + + Extract the nurbs control points and knots of a curve. + true + c6268300-16ed-404c-b9e4-1cafcd9a4301 + Control Points + Control Points + + + + + + 1028 + 963 + 98 + 64 + + + 1072 + 995 + + + + + + Curve to evaluate + ac3c66ce-9074-4965-ae99-a1e5070f194c + Curve + Curve + false + 2c068412-dd41-452e-bac9-91d566047990 + 1 + + + + + + 1030 + 965 + 30 + 60 + + + 1045 + 995 + + + + + + + + 1 + Control points of the Nurbs-form. + 0ba8daa0-b028-4ef0-8f07-fda191983808 + Points + Points + false + 0 + + + + + + 1084 + 965 + 40 + 20 + + + 1104 + 975 + + + + + + + + 1 + Weights of control points. + 669a348d-ad69-4069-a8cf-7f2e574bd958 + Weights + Weights + false + 0 + + + + + + 1084 + 985 + 40 + 20 + + + 1104 + 995 + + + + + + + + 1 + Knot vector of Nurbs-form. + 6d0eb073-301d-4827-8d9f-43782ee2170c + Knots + Knots + false + 0 + + + + + + 1084 + 1005 + 40 + 20 + + + 1104 + 1015 + + + + + + + + + + + + 66d2a68e-2f1d-43d2-a53b-c6a4d17e627b + Control Polygon + + + + + Extract the nurbs control polygon of a curve. + true + d1249164-5d5a-47ee-adb4-1fe17d436eb5 + Control Polygon + Control Polygon + + + + + + 881 + 917 + 98 + 44 + + + 925 + 939 + + + + + + Curve to evaluate + f663a06d-983e-49d2-824e-0d163288a9b4 + Curve + Curve + false + 2c068412-dd41-452e-bac9-91d566047990 + 1 + + + + + + 883 + 919 + 30 + 40 + + + 898 + 939 + + + + + + + + Control polygon curve for input curve adjusted for periodicity. + 71d0392e-7b4b-455e-8234-b8bcbca30fce + Polygon + Polygon + false + 0 + + + + + + 937 + 919 + 40 + 20 + + + 957 + 929 + + + + + + + + 1 + Control polygon points. + 228338cd-48fa-4a87-b8b2-23e31c213f7a + Points + Points + false + 0 + + + + + + 937 + 939 + 40 + 20 + + + 957 + 949 + + + + + + + + + + + + dde71aef-d6ed-40a6-af98-6b0673983c82 + Nurbs Curve + + + + + Construct a nurbs curve from control points. + true + b2c754fa-cf3f-4949-8aca-642420263184 + Nurbs Curve + Nurbs Curve + + + + + + 1097 + 808 + 121 + 64 + + + 1166 + 840 + + + + + + 1 + Curve control points + 66c45323-5749-458d-bd6e-7183c8e3c429 + Vertices + Vertices + false + a01f047a-f95f-4ccf-8851-4aad1d51ef64 + 1 + + + + + + 1099 + 810 + 55 + 20 + + + 1126.5 + 820 + + + + + + + + Curve degree + 39574908-c6e0-487b-bbb0-a41759c07372 + Degree + Degree + false + 0 + + + + + + 1099 + 830 + 55 + 20 + + + 1126.5 + 840 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Periodic curve + 66339c9d-8fb2-45e3-b839-eb7e4611557a + Periodic + Periodic + false + 0 + + + + + + 1099 + 850 + 55 + 20 + + + 1126.5 + 860 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + Resulting nurbs curve + 41c339cc-3142-4326-b45a-76517b852b94 + Curve + Curve + false + 0 + + + + + + 1178 + 810 + 38 + 20 + + + 1197 + 820 + + + + + + + + Curve length + 32424e54-590c-416f-9d71-b2a2ef48303b + Length + Length + false + 0 + + + + + + 1178 + 830 + 38 + 20 + + + 1197 + 840 + + + + + + + + Curve domain + ebb9be39-a81a-44a6-a311-2a170079fcf1 + Domain + Domain + false + 0 + + + + + + 1178 + 850 + 38 + 20 + + + 1197 + 860 + + + + + + + + + + + + 7cd2f235-466e-4d30-bd3c-3b9573ac7dda + 4442bb24-c702-460c-a1e4-fcdd321eb886 + Fast Loop Start + + + + + Loop Start + true + 1a6062cc-c8b8-41f3-b6a7-6bc74f196946 + Fast Loop Start + Fast Loop Start + + + + + + 816 + 691 + 112 + 64 + + + 875 + 723 + + + + + + 2 + 2e3ab970-8545-46bb-836c-1c11e5610bce + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3 + 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 + 2e3ab970-8545-46bb-836c-1c11e5610bce + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Loop iterations + 132f9abf-3d0f-4258-b1ee-07ff3f1039fc + Iterations + Iterations + false + d99d28cb-b887-446e-b3e6-b8d85e42901a + 1 + + + + + + 818 + 693 + 45 + 30 + + + 840.5 + 708 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + 2 + Data to loop + 4d512fe3-1b2f-420c-b993-00193967c569 + Data + Data + true + 715f6ab9-fbde-4be9-929d-c73fac2e4d22 + 1 + + + + + + 818 + 723 + 45 + 30 + + + 840.5 + 738 + + + + + + + + Connect to Loop End + 7883f413-d1a3-4d27-b054-023ea5b7a296 + > + > + false + 0 + + + + + + 887 + 693 + 39 + 20 + + + 906.5 + 703 + + + + + + + + Counter + 52f33e11-cdd1-4e85-97d2-6354e07fb596 + Counter + Counter + false + 0 + + + + + + 887 + 713 + 39 + 20 + + + 906.5 + 723 + + + + + + + + 2 + Data to loop + 2c068412-dd41-452e-bac9-91d566047990 + Data + Data + false + 0 + + + + + + 887 + 733 + 39 + 20 + + + 906.5 + 743 + + + + + + + + + + + + + + 4e5b891f-3e8d-4b3d-b677-996c63b3ac70 + 4442bb24-c702-460c-a1e4-fcdd321eb886 + Fast Loop End + + + + + Loop End + a0450a96-2f3f-423a-b0d0-c573fed46d11 + Fast Loop End + Fast Loop End + false + 0 + + + + + + 1332 + 691 + 88 + 64 + + + 1381 + 723 + + + + + + 3 + 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 + cb95db89-6165-43b6-9c41-5702bc5bf137 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Connect to Loop Start + 2696cb58-00e5-402f-b136-7d9cf5d8bab4 + < + < + false + 7883f413-d1a3-4d27-b054-023ea5b7a296 + 1 + + + + + + 1334 + 693 + 35 + 20 + + + 1351.5 + 703 + + + + + + + + Set to true to exit the loop + ae3e94c2-052d-44f4-8e43-e278fae6f6e2 + Exit + Exit + true + 0 + + + + + + 1334 + 713 + 35 + 20 + + + 1351.5 + 723 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + 2 + Data to loop + 59c75084-f5c5-43ea-9e15-a8071312b985 + Data + Data + false + 41c339cc-3142-4326-b45a-76517b852b94 + 1 + + + + + + 1334 + 733 + 35 + 20 + + + 1351.5 + 743 + + + + + + + + 2 + Data to loop + ff6f0453-468e-46a0-86d1-880be7129d67 + Data + Data + false + 0 + + + + + + 1393 + 693 + 25 + 60 + + + 1405.5 + 723 + + + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + d99d28cb-b887-446e-b3e6-b8d85e42901a + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 11 + + 19.0 + + + + + + 501 + 742 + 250 + 20 + + + 501.917 + 742.4928 + + + + + + + + + + 1f8e1ff7-8278-4421-b39d-350e71d85d37 + Nurbs Curve PWK + + + + + Construct a nurbs curve from control points, weights and knots. + true + 28b9b087-718f-4c32-9cb6-f78b272b1eb5 + Nurbs Curve PWK + Nurbs Curve PWK + + + + + + 1441 + 929 + 106 + 64 + + + 1495 + 961 + + + + + + 1 + Curve control points + 25b10084-1c94-448f-9224-3977e629a0d8 + Points + Points + false + 0ba8daa0-b028-4ef0-8f07-fda191983808 + 1 + + + + + + 1443 + 931 + 40 + 20 + + + 1463 + 941 + + + + + + + + 1 + Optional control point weights + 8196b657-af31-4b03-bf6d-8da72032b957 + Weights + Weights + true + 669a348d-ad69-4069-a8cf-7f2e574bd958 + 1 + + + + + + 1443 + 951 + 40 + 20 + + + 1463 + 961 + + + + + + + + 1 + Nurbs knot vector + f04f6009-48e4-49eb-a355-5176f003cafa + Knots + Knots + false + 004bed2a-750e-4ca5-a5d3-235b2ca4509f + 1 + + + + + + 1443 + 971 + 40 + 20 + + + 1463 + 981 + + + + + + + + Resulting nurbs curve + 575c396c-7fda-4a45-a27a-521d2bf247ae + Curve + Curve + false + 0 + + + + + + 1507 + 931 + 38 + 20 + + + 1526 + 941 + + + + + + + + Curve length + 22a68347-5b78-4c64-9a10-cb1c5c53eaa4 + Length + Length + false + 0 + + + + + + 1507 + 951 + 38 + 20 + + + 1526 + 961 + + + + + + + + Curve domain + 352f7ada-ed53-4b96-ab04-bb1fc1403a66 + Domain + Domain + false + 0 + + + + + + 1507 + 971 + 38 + 20 + + + 1526 + 981 + + + + + + + + + + + + 846470bd-4918-4d00-9388-7e022b2cba73 + Knot Vector + + + + + Construct a nurbs curve knot vector. + 49bdc8aa-2bc2-4a2c-9583-e2b4c031e5d6 + Knot Vector + Knot Vector + + + + + + 1273 + 991 + 112 + 64 + + + 1341 + 1023 + + + + + + Control point count. + a6d82057-339b-42f2-b648-23edce66a807 + Count + Count + false + 9590eea3-57ae-496a-a7bd-7161070d75a2 + 1 + + + + + + 1275 + 993 + 54 + 20 + + + 1302 + 1003 + + + + + + + + Curve Degree. + e007705d-0549-442e-994f-641ed55115b6 + Degree + Degree + false + 0 + + + + + + 1275 + 1013 + 54 + 20 + + + 1302 + 1023 + + + + + + 1 + + + + + 1 + {0} + + + + + 11 + + + + + + + + + + + Curve periodicity + c491de45-b8c8-40f1-8d12-5ed20ed68d80 + Periodic + Periodic + false + 0 + + + + + + 1275 + 1033 + 54 + 20 + + + 1302 + 1043 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + 1 + Nurbs Knot Vector. + 004bed2a-750e-4ca5-a5d3-235b2ca4509f + Knots + Knots + false + 0 + + + + + + 1353 + 993 + 30 + 60 + + + 1368 + 1023 + + + + + + + + + + + + 1817fd29-20ae-4503-b542-f0fb651e67d7 + List Length + + + + + Measure the length of a list. + ff5fe1a0-acc1-4386-bf74-8831ac810f77 + List Length + List Length + + + + + + 1160 + 989 + 81 + 28 + + + 1193 + 1003 + + + + + + 1 + Base list + 5531829d-f1c1-4758-8980-6d242d8cc08d + List + List + false + 228338cd-48fa-4a87-b8b2-23e31c213f7a + 1 + + + + + + 1162 + 991 + 19 + 24 + + + 1171.5 + 1003 + + + + + + + + Number of items in L + 9590eea3-57ae-496a-a7bd-7161070d75a2 + Length + Length + false + 0 + + + + + + 1205 + 991 + 34 + 24 + + + 1222 + 1003 + + + + + + + + + + + + a79ce08b-5ca6-4d75-aeab-d735a5acaa18 + ab81fea9-8d16-4caf-af89-2736c660f36d + Greyville Points + + + + + Returns the Greyville Points and associated parameters + a882c09e-29da-43e1-9e31-57c08b448024 + Greyville Points + Greyville Points + + + + + + 1038 + 726 + 113 + 44 + + + 1082 + 748 + + + + + + A nurbs curve + c689b322-78c0-4a48-82ab-a9b7e4e5ec7f + Curve + Curve + false + 2c068412-dd41-452e-bac9-91d566047990 + 1 + + + + + + 1040 + 728 + 30 + 40 + + + 1055 + 748 + + + + + + + + 1 + The greyville points of the curve + e50ae107-9b12-43d5-9bd1-94647c3a6508 + Points + Points + false + 0 + + + + + + 1094 + 728 + 55 + 20 + + + 1121.5 + 738 + + + + + + + + 1 + The greyville parameters of the curve + 9b71a82d-df97-4421-a5d5-0cfb773c9384 + Parameters + Parameters + false + 0 + + + + + + 1094 + 748 + 55 + 20 + + + 1121.5 + 758 + + + + + + + + + + + + 269eaa85-9997-4d77-a9ba-4c58cb45c9d3 + Discontinuity + + + + + Find all discontinuities along a curve. + 00dd3ebc-8787-41a2-903d-9a8488f064b2 + Discontinuity + Discontinuity + + + + + + 1025 + 511 + 191 + 44 + + + 1147 + 533 + + + + + + Curve to analyze + 10998773-96dc-4c67-b0c2-a131fc5cbc03 + Curve + Curve + false + 2c068412-dd41-452e-bac9-91d566047990 + 1 + + + + + + 1027 + 513 + 108 + 20 + + + 1081 + 523 + + + + + + + + Level of discontinuity to test for (1=C1, 2=C2, 3=Cinfinite) + 090ccc0d-0e16-4ba4-bb8b-465342585f23 + Level + Level + false + 0 + + + + + + 1027 + 533 + 108 + 20 + + + 1081 + 543 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + 1 + Points at discontinuities + cee1e4a0-44d1-4f3b-a086-dba624b4efaa + Points + Points + false + 0 + + + + + + 1159 + 513 + 55 + 20 + + + 1186.5 + 523 + + + + + + + + 1 + Curve parameters at discontinuities + 76babd58-bd12-43e2-a96a-18d9a812cdff + Parameters + Parameters + false + 0 + + + + + + 1159 + 533 + 55 + 20 + + + 1186.5 + 543 + + + + + + + + + + + + ad013215-63f3-46da-8b16-ce3bf593a0c0 + 1c9de8a1-315f-4c56-af06-8f69fee80a7a + Curve Edit Points + + + + + Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through. + 0feb05f2-8bd6-4fd0-ab0d-f86448fed30b + Curve Edit Points + Curve Edit Points + + + + + + 849 + 793 + 123 + 64 + + + 903 + 825 + + + + + + Curve to get the edit points of + f41cc918-1c76-4b49-9752-6fd79a0b8416 + Curve + Curve + false + 2c068412-dd41-452e-bac9-91d566047990 + 1 + + + + + + 851 + 795 + 40 + 30 + + + 871 + 810 + + + + + + + + If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through) +If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command) + 4ee9ddd4-6900-4c5b-9143-cb03c39320f3 + Knots + Knots + false + 0 + + + + + + 851 + 825 + 40 + 30 + + + 871 + 840 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + 1 + Edit points on the curve + a01f047a-f95f-4ccf-8851-4aad1d51ef64 + Points + Points + false + 0 + + + + + + 915 + 795 + 55 + 20 + + + 942.5 + 805 + + + + + + + + 1 + Tangent vectors at edit points + e525749e-a168-487c-bef9-5f8da9944cfc + Tangents + Tangents + false + 0 + + + + + + 915 + 815 + 55 + 20 + + + 942.5 + 825 + + + + + + + + 1 + Parameter values at edit points + 49a10ba7-6d08-474e-b8b4-0feeb3d3c4a2 + Parameters + Parameters + false + 0 + + + + + + 915 + 835 + 55 + 20 + + + 942.5 + 845 + + + + + + + + + + + + + + + + + iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABjKSURBVHhe7Z1ZcxRHtsf9ie43uE/39b7diPsF5mkiZp5nIq5jYsL2hRkRYBjC7EZgMBhhwCBLSBYGsQqp1fu+aZdard73Vc38qk5RKkmtlnrBSKb/ES5nZWWdzDz/PEt2lYrP+vg94F0fRxZbFK60idXV1bm5ucXFRQpaVfsQCQsLCxS6kfPJoisKl5eXw+EwR+28fcDZvArkQCQ1SOsYIvNTQ+cUov3uTYd7YQ4hiUSiVqtVVVCgVK/XG4LNTalvjUqlgrRPkMiurFBMp0sK19fXb9y4wWpgAIJatcyVXD4fi8W4Gk+mtQv7IRKJ9ClsAyirSy8KoDAajZ46dQpDVFlQUKtW1lUyVlfX5sKhheVV7cJ+WFtb61N4UKB67IYY1o0JAm7HjgOBQDKZVFnoCn0rbM8Ku/eiAtaB3+/HZ6osKCAUbjYa2sm7d5Vy2WKxmM3m6ZkZYp5W2wx9K2yDwqWlJSjUTjqFmCCFr7/+GmkqCwrWV5fNsyaL3YGhQ53D7Z0xvZ21mp+8eDP84EHU6dTa7QI5kUj+pMDE26YQ1asbgR54UUIgpvPw4cNt6Uytmk6n4olEKpWOx+NLyysWq8XlcpnM1s8//79nx44FL1yoZnPYaTabU9vXJH01mUyf4OYSDbRNIcBoMETtpFOIKeP6CISlUllhbw/gZkEykbA7HKcvX1578yZw9my5mJ+bmycih8Jzdps1EksNDg4+fvwY1rUOPg2gn/YoZI33youKKZORPns2OR8ORdbX84VCPBYrlMokpZlsNpVMZbPZSrXG2DY2NoLBIIVbt25N2WzT168vu92EyVKpVGfjWKlgiJOTkz6fD7PW+vg00AmF6B2/16W/wvjEBDGagYETfq/Lbrd5fX632x1LpjciK3any+FwTE29WY5EcZJOp9Pr9bJNhKG11dXQ4iKeljEbgTV/al4UMPH2KATde1EUzSKQuMVOwGq1wov6S8xWIroDuVyOGzE17bwZENLPSPcBGieH7N6LAoToexJsC4ZUFpojFArhRbH+SqWiVTVDf194IAp74kWN0ZQgd/XqVcSqLChoNOpOh31xZY1m9OVye4aHfxodG3809iSytqY1aoa+Fe5PoR7AtPOOIOsAyDog1bxy5YqRQkhcW11hLzEXDrndXo/P/3zymcVmezNtor3WpBn6VrgPhWgc10cA0847xY51gFjKZCKbBqiMaOAUgufgMxjM5/PSoCn6Vrg/hfDX5Y9q3KsnMlqVWtkCEIOl4m85Ymda7S5osj49tEHhDuvpGMZEZgcQ3jE0EZ8eDkohOkL1ZIakGBDQFoz67cnPAocK2iQPhg+x1A5EIXpnA55VQfZ/cBQKBaJXIpGIRqPIwSUS1ZgJBSCGKGUKnErl7kJPmhmv6gX9ql5ofVUvcFV5HB2Py0yZJpOVcgsQDnrO4v4U0iVjLZdb/Ya5F2Qbx8799evXiCIK+nw+rJBCIBAQm2bDByhwSqVESgoSd3c343Zpxmpo2owyNW01o40MiVNpJn3JkKiRIRmboRaLxfLmzRuZ6bvGZqXlgzBBOp1Gmii2V0DsPhTC39jY2PLyUjqVIm8EpBWZTAaL5L9afVv2aERjc3NxYb5Qqjx9+vRPf/qT2Wx++/bt6Ogo0mD0woULd+/ehd1vv/12cHDQZrPduXOHyqmpqfHx8XPnztGM9tT88MMPXKUNLWnPXefPn3/16tXExATNRkZGpqenL168eOvWLbvdfv36dbYoKPf+/fs0e/HiBb3TbHh42GQyXbp06ebNmzS7ceMGZYb08OFDmk1OTj5//pzCgwcPqLx8+fJ3331HMxrTjBu5HSG//vrry5cvaXbv3j2Xy/XXv/6VBjLZbCqxtLK2529L75FKpX5rCsV1HDt2bHl5cSEcmjWbHQ6HzWb3+X0Mxef1ZQsldWytwGzl501WMYtXHBG5paSXuws0oLBXM7na22Yc9ULrZlKptFaDAktKm+TB8FtbIcPFb9AlA8WJq2PYiVqtxmqlsZxieVIwAsMlFiIH/yOSfwdgLTIpwrwyQ8NPuwRFTM3pdDJZyKaGDatcAh/iQRhim1AIeRwJACw0CkQFYrU6hp2oVqv4PbwN7sVmtSTjMVmxONvVldVgwL8SiT6bfD48/Ij5sCBE8sGBpui9M3CvJuUDgDWN+/3p4UOUMBcO0dni4pKPGBoIzM7OXrt27c9//vPnn38ej2+sra4EgyG/z7eyFrHa7Ldv3eotkQxgJ4VomflLYNe53ItCAevxD3/4w43vviMBpYzu8D3JRDIcDEQ24s8mJ4eGhmC2A51yl+zrDwJsgsY6GAnrRhPUayD/yZMnBEWmvxFdV9S0uub1BTxuNyMhG/rjH/84NHS3Xq8nEwmSqmAguKi8fmC7NjjY2xdEGMA2CsV5SsalWwzZBAtH4UpFrVbd/ZAdjvfKWpkSa4J10K4JchdOSZNyAJSKxU1DRpHJpF0u9wdiEf0gmQCvdfYemmtVXgrJSsEIVhWT0kT0CIjdRqHuPAUoHTs4fvw4R3UMCtKphMvhsJjNMyZTPN30IVEjl83W68rvlpyQhRMbRFoLSI9GUMleSiTuQKlcNk1MJI0/jjc2A34ffflJ+kNzTqcLH37ixAAqayq8SyCTte7xeKqVcqFYYqYtHnbqIJ35sBQanacOFhqptpHCarWSzWSwD1ZcqdJkM9TYrBEFLRbz26mp0MLSkye/sjdgAbI+ZIkIUAGgRwFzE7DAAT1i/aFgsFgo1DcbdeU1/RrLAvn8d+/MmYeXLqW2UUgutVkqFrK5fLlUZgcUWY/++OOPyNFm0lMwd9Ry+/atfC7jsNtMMzPTM6ZscZ/d8wffVKC4pgsWj1Eq7b95MIJNPbeg/XKlOjMzQ9hAslAlzAGNSeUpxBZYRgKWztenT795/ZIcnrvICHxej8PtRXjY4fj+wgXpqAWqlQqrXptD7yAqYqmxX2TfycJhpoBQsq8ZfpytPWC4bAwY4sHBlAiNgDIrIBQKwRkGwfx3Q+vGABYTFLLN9/l8JL1IU180rMOK5dGjb/72t5j63mljs760tJhKZwTZHP47y0qnnC8UMZSxsbGeWyHakPXHvEgRZLLKfFUWW0PSAk1Qj3AgCgEdqyZ0INAYMEkiE+QBrAoL02QdDOJLd8fC+dnZdXW/Beq16urKkt1us9psFpudnu02Gzm92WoNhueh9quvvmIkTVdJZ2BSzMUoU5vzwcCk5K4eAj0ciMKDg7kxUAiDOQZNjcxZjtLmgOB2PI9KVifAHPF1vcpIGbzq/hc+BA3dgJn2jEJZmKxTyOMoZiTkcYka0JZBIAEC8IedQbaG3WucMbOYmAXHtsb/26A3FMrEWKGQh/2hNanhqDMnXKrN2wCiuLEzdE8eQAjjF+M7hPyBHlCo0wMo7JinsZLy4VzIe0HmBX/a+aFE5xSyKoF4mKD6kqfUGMHkuSRlbqENjeUUiJxDC8V7qJM65GuucwqJc0DIIGKxBwAUdHAqk5d69fq63pgjtx9O7TBIwgH8aeeHGx1SiPEVCkVuOTjUrx4of+CiAyEoS5N4CCDrCeYknEvl4QeabI9CmafNbksk4q1fj9+BXCbldLrYE4fm5kN+//Jq5JeJJ7dv32Z3TMgBIl9AL9LRvuBGlkLH0PulO2jD8x8V49OBbjuhcGDgxMJcaEHd9uFy3G7X/NI+HzWo12vlUikRj6Uz2XQymUimJp8/HxkZwamy6oGoTwoolyP6Ra1Gg5DedXa5l81DJpNh+2gEO8K9kFZ/ylELCrh9Y2MDgXRnzLyOENBtexQCwti9e/eIZblcNplK4VFRWjaXR0Iul3O5XLFEwjn1+vnkZOsf71El6jMyRBklAiiETp1UvSy8ivUQSmdMplQygTNQ/sSwWqm1/LsnQbXCQlKchzxFKZVKU1NTSEOycSRHCMyibQoBLBaLTX74LhaLDofj+8HBG2dOoxqhMB6LQTDKqtVqKLpULhcLhWqtZrPZaIwoTegeUMxQheL4VMAlwGi++PLLdCoR9Hvh0ulwuTxuq8U8a7FV934pKxaNzM0rBsfKsFgs8VT2H8ePMRIMWuvvqIFJdUIheizs/Rx/7OrledvWe0HJRMxms9hRsMs1Pf2WQtDrDc8vjoyMDg4O4s00ofsBF2f0cljhxMQELrFer5fLZY4V9a9+m64tHZv1uvKTdLmMFXLM5fPj4+OsjyPnP3UwqU4oxHRQhKqTLdTrm0SYH2/evPyP48OjjwOBgHZBDYRYJDGqUCxRIDut1eoHtMIWgH5o0PowAGPnKsREo9H79+/DNAaH09YuG1Cv1RDCahCBRxHMom0KJRYuLihPHuIJ5c1SdnnRWDwYCFhtttcvnifWVtn64etULe2J3bGwLWA3Q0NDCCkV8/S1FokoI1lnuxlx2O3j42NzC0tWq9Xtdl+/fv3s2bP5fB43TtiGsGQqnYjFiKiZXP7u3SFu/7SsEBWcPHlqeUl57Rr1kzuGAn6nxxcKhXw+n8qOhkQs6vX6FtW0H6bgXs1J5sk4i+XqixcvcGKxWEyT2w7QODnIwMBANpst5nNz4ZDVMjs7aw2GAhar/fXrNybTTKFUcTochOdnz55BIcZPIA6HAk63JxwKWszW8Px8Ll88efKkx+Ppxhl8XKDnTiiEKnymStMW8Fo4Je1EBYEpGlnz+YFvaWVtdWU54A/4fN5gKJwrlPBvmBGmo8ltEwwDX218y4h0SQrsNUmMg0FirvfKlStXr15l9wLrclVBoyHpK8HzqH8kg1m0TaGA1a3oogtgxFinJq59oHcSy2w2U97jFwaSTK2kAivcHTipwXl8ohSyqJn5Dog7kk1bayhOVd3CdxaExJGeOnUqvhFR3qlx2D0+HxsFr8fj9vpLlSrrAys0plSNRh0PoLxIoOwo5p1Ou9sXyOYKp0+fxlgZkib6qIGpdUghUDZr20ElugNNrxpBA/iTlp0BFm/fvo0fZp+QTMQz2SypCp48lUrXNxux2IZEOJU+DblcNpNJs0nFhWxsRCmxA/n+1vcMo7OVdBjAvDqnsCnkZyrtZD/QWOjsACgdV0ksrFarbPKUt6PeQ/mlplbL5XIcKwZol6mt1eQW0lSEHF0TBD2mEPJgRTvZD3Cg5KfdfQKFFUCnTdHiko6OF9DhQS8pFErAASmhGUo8OOV9NEWPrbAtLyro4JY+jOglhR2YVLuG28du9IxCOJDnQe2SQTTq+9Ju0EsrhInO9nkd39gH6BmFHRuTmO+R3pl9XPSGQqEhpH4PpC1ITi/0/w7y+4+CnlkhZqQ899kb7KzZg8sW+/3/K6lUKqp+VYjbu9wgfrLoDYViRvWWr67EouuR9Sg05zXkcvnC3PzC48ejGxsbXf7YdhSB0ph1B9jhrtBttxRiOrhEbAgjU8nSgKXde/CTZXLy5ZMnv0xMpJLJReXTST673TY7aw4GA8urEZ8/MDAwIF+AYBEgR2T+vgEH6+rHv7LqB9GK77/8pa5r5U8kd6Cw/dNgiUSC23UiUXW3FK6trfn9/hs3biRi0bXIejqlfGWGDnLlysQPP/w8MPDjl1/Ovn2r0qoAakvvH/pEIhGXy8WRdfD73iAa5wUBs7Oz8ni8UipubMRqtZryVlix1PQlvEw6XatvKq+Oqf+gXDAYnH77FiEijQY9oJDRfPPNN7lsGjKwpPVoNOD3pwql5/fvTZw5c++rrxxmszqYdzucLbEQCTI9buwspz0kYBZGngQsZcDUxAdK7k3g+Ne//iXfb8umU8ozMb83EJ7zulz+0NY/PybYrNe4eWFxMRgK+/1el8dvMltOnTwpqgO06ZZCAHOko6QnaqcasLYfhoZeP378y6NHw6Oj1DTqVbfbxTTC8/MLc8o/EeILBM+fOycZDfNneofcl+5FEhCSAL5EsjOOUhAHo11WPwRpsVj8214PU1Z2Q314IjVGUKk+jWmoTTaxQpPJ1EsrFDC33d3L67ZAG2KjUamUU8l4PJnMpDMQHwiGBgcHmRIzlDlT2K2m3xgyAOMwhCTdmIAMWMZs5ElvI7cAkaDLBFRiiAQ5UU5TjI6OXrlypen7edxofG2Mmt5QiER2DuqTuC3oj/EocCoFiFTIVN8STr7/x0GYuaiAJSaKQCCKoNAWZDD7QjrdAXoECJF+hR7KjMdIEgWFIrWN3KLdv50nY0GHtIeA+/cfmGdNayvLXp+PtJxFvLi0jJ9NZ3PT09OXLl06ceLE8+fPG41N8pu11ZXFZeV7U/Nz4fVY3OFwDg0NSQ4IekYhkPG1Be1OFTJhwqHoCwWResFxCxAPMpm0FAAFtIM6NIkqjEqUHjkKARx1VhRTeu/9qOGSUKUOU4FIEMhQgV6WegGNhV1dCAJFuBQIHNeuXTPNzCTiMVp4vR6zxbYejS3MhaPx5OvXr//yl7/cvXv3p59+wn9m0im/z7uwtOIhUgZCsXjSbLZcuXyZyUp3vaSwe6ALJswkmT9kMKTWqFUr8o+nqeauOG2H3U5URo4wxFEUt1uPolw5KhSp0MahQqVmiyQg9QJpL70IdLEcpUANkKtCqnazevuG4Z9sxC1phXfvfvnll5s3bxLqrl69yjZDq1XDkBRisW0v31JziCgEDA5DZM4HoTCViLndnoDf5w+FPQ7n0tr6naGh27dvcy9KFPUJSaJB48yBxswexgTkFp0noUeIkYLwxFHa7O5lt0yAnwgEAjRmCrhKPeAJSXoCoUSfarWgvimo8weQzy5OdzbUHC4KmbOyhtXMWx1wKyjTajRKxSJhtoImKpUXL19arVYSJU2cgRspAKkXiMaBkIRaVYK2uVapkQZAu2EXTzsktwA+//z581NTUwy/XMzZbbbw3Hw4FLbbrMuRqDozDZl0wul0KN+VUz+HOTNrWlpdnzVb2JMgRKTR7NBRiNYAvl6dxRbIdB6Pj4edzjvffhsy/PPNRpCtEfbRr65QyugdboQMdlhLC8uYEPRg7sjE8VLmKD8PSWOVI4Ukjpx2BhlAU+Atne//OdRyucTiIxksFPKl7Rsz4kNRBWuUlZpRP07odrvHx8dZ4iKKZoeLQkC0Vz+WPZnNpMnQ0uofcsaUnUjKZLEM/f3v00+fJZKJZYWUxXX107yR9SjBo1SpPn36lNWNk9EIW1xEmmihoH6uP5fPpbMJjsr3tFTIVWyYsuxQdSATTZH7sZ7ohQLQC/tCk7Idqm3PIRmZetcCNtYcpVIgjweopCANKHAjt8sKA4eRQoZI0vzgwf1sOoU5kHMvLS443Z7q5rtSJn3niy/SSpBvLC3M+3w+q806PTO7tLzqc7vj6SyJ3J07d6AQk4JCYgZ2xtSAhJNoNfoP8/8ubGiVOup1tkANu92uqwYhnKIyrpZKW186NYal1sCf69IAdsmQdOvkkuKX24dRJqCjQ0chwIZ01evwh0Jnv/jizcOHt+7ccTpdWu37f0pBIGkCEjhiQJevXBkbe5zJpDxu5ber8nrszeh3/3P2s4mpERqzMsxmczAUdjmcFqs1W6icP3cOOxYjhr/jx48jfLNek3gor4EH/KF8yz9h1KFTiFdnPJKmHTxkHhB0dBgpZOb4K1UPW6hWKgU1eRMPI5Xqz05bMOoICl+9emUymYgixMhytbb60/D1//rP///v/zh/8Uy1UlWeCuRyhXwOPeOmEPXzyIjH40ECA4DFR48e0Rdi5SuHykODYtG4YlpDpxD6kbbDenoFOjqMFIoNqXpohWIh63A4ZH/ndjpT2fyD+/d//vlniUOoDCWmUlt/bEW2XqrXs7UqzNXe/xmUjnq9TiqkJ+sU4GzHEzQBgSm2sUF4hNcMyOXqhs/g62AVIkSCn8j8EKCjI0whmyqSnWyOoJmOx2LFcuXx2OMXL15wryZIBVaFKgXr5D8qtPP3oA3Qbnjv+oaHh7HOZCK+FllPpdMYLawkkqmZ6bdPnz2dmpk9e/bs6a+/vnn+fMDrLZeK9EPSSDPWULVel78uNor9EEAPh5FCDIikCwvYD8rPsMoPM+pPr/Vajbt2JBGA0wNCu0E1QTzqP//5T9zmRjRCKH31+pXD6bbbrW9NlhnTzPzyUnBh6djx42cGBsZOnPDOmvG1pFckyWxWnA5HOle8du3ayMgIpGtCPwwOKYVAU2qb0G7uBWARL60H3XqN6Kn5XlItv8/PXnt0dPTho0c/j4+zl5RLRpAQ4eM1cR8MdHRIKfzogEKOpDNNNxHU7064dmCvrWFvQUd9CpsA/tifXLx4cWN91eVy4VSD4bnFhUWvx7OwvFqr1QOKEfqIqSpZzbHbpX8I0FGfwiYgBwmFQgQzrC2fy3IaTyQ2ohtwFksk65sNNnler7e1IfYp/MiQNFV1pNs9KXmT8pmiClsO5WHC3kBCn8KPDChUcqRmkKsctfPtkHpFxIdHn8Ijjz6FRx59Co88+hQeefQpPPLoU3jk0afwyKNP4ZFHn8Ijj20U9nFEoVHYxxHGZ5/9Gx64wjPshYWDAAAAAElFTkSuQmCC + + + + + \ No newline at end of file